【题目】如图,已知BE平分∠ABC,∠CBE=25°,∠BED=25°,∠C=30°,求∠ADE与∠BEC的度数.
![]()
参考答案:
【答案】∠ADE=50°;∠BEC=125°.
【解析】
根据平分线的定义得到∠ABC=2∠CBE=50°,再根据三角形内角和定理得到∠BEC=180°-∠C-∠CBE=125°,由于∠CBE=∠BED=25°,根据平行线的判定得到DE∥BC,然后根据平行线的性质得∠ADE=∠ABC=50°.
∵BE平分∠ABC,∠CBE=25°,
∴∠ABC=2∠CBE=50°,
∵∠C=30°,
∴∠BEC=180°-∠C-∠CBE=125°,
∵∠CBE=25°,∠BED=25°,
∴∠CBE=∠BED,
∴DE∥BC,
∴∠ADE=∠ABC=50°.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在2019年1月份的月历表中,任意框出表中竖列上三个相邻的数(如图,如框出了10,17,24),则这三个数的和可能的是( )

A. 21B. 27C. 50D. 75
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图①,E是直线AB,CD内部一点,AB∥CD,连接EA,ED.
(1)探究猜想:
①若∠A=20°,∠D=40°,则∠AED= °
②猜想图①中∠AED,∠EAB,∠EDC的关系,并用两种不同的方法证明你的结论.
(2)拓展应用:
如图②,射线FE与l1,l2交于分别交于点E、F,AB∥CD,a,b,c,d分别是被射线FE隔开的4个区域(不含边界,其中区域a,b位于直线AB上方,P是位于以上四个区域上的点,猜想:∠PEB,∠PFC,∠EPF的关系(任写出两种,可直接写答案).

-
科目: 来源: 题型:
查看答案和解析>>【题目】二次函数y=2x2﹣2x+m(0<m<
),如果当x=a时,y<0,那么当x=a﹣1时,函数值y的取值范围为( )
A.y<0
B.0<y<m
C.m<y<m+4
D.y>m -
科目: 来源: 题型:
查看答案和解析>>【题目】小明在暑期社会实践活动中,以每千克0.8元的价格从批发市场购进若干千克西瓜到市场上去销售,在销售了40千克西瓜之后,余下的每千克降价0.4元,全部售完.销售金额与售出西瓜的千克数之间的关系如图所示.请你根据图象提供的信息完成以下问题:
(1)求降价前销售金额y(元)与售出西瓜x(千克)之间的函数关系式.
(2)小明从批发市场共购进多少千克西瓜?
(3)小明这次卖瓜赚了多少钱?

-
科目: 来源: 题型:
查看答案和解析>>【题目】给出下面两个定理:
①线段垂直平分线上的点到这条线段两个端点的距离相等;
②到一条线段两个端点距离相等的点在这条线段的垂直平分线上.
应用上述定理进行如下推理:
如图,直线l是线段MN的垂直平分线.

∵点A在直线l上,∴AM=AN.( )
∵BM=BN,∴点B在直线l上.( )
∵CM≠CN,∴点C不在直线l上.
这是∵如果点C在直线l上,那么CM=CN, ( )
这与条件CM≠CN矛盾.
以上推理中各括号内应注明的理由依次是 ( )
A. ②①① B. ②①②
C. ①②② D. ①②①
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC 中,AB=AC,∠B=50°,P 是边 AB 上的一个动点(不与顶点 A 重合),则∠BPC 的度数可能是

A. 50° B. 80° C. 100° D. 130°
相关试题