【题目】如图,点O是线段AB上一点,AB=4cm,AO=1cm,若线段AB绕点O顺时针旋转120°到线段A′B′的位置,则线段AB在旋转过程中扫过的图形的面积为 cm2 . (结果保留π)![]()
参考答案:
【答案】![]()
【解析】解:由题意得:OA=1,OB=3; ∵S扇形A′OA=
=
,S扇形BOB′=
=3π,
∴线段AB在旋转过程中扫过的图形的面积=
+π=
(cm2),
所以答案是
.
【考点精析】关于本题考查的扇形面积计算公式和旋转的性质,需要了解在圆上,由两条半径和一段弧围成的图形叫做扇形;扇形面积S=π(R2-r2);①旋转后对应的线段长短不变,旋转角度大小不变;②旋转后对应的点到旋转到旋转中心的距离不变;③旋转后物体或图形不变,只是位置变了才能得出正确答案.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在正方形ABCD中,AD=2
,把边BC绕点B逆时针旋转30°得到线段BP,连接AP并延长交CD于点E,连接PC,则三角形PCE的面积为 . 
-
科目: 来源: 题型:
查看答案和解析>>【题目】(1)如图1,D是等边三角形ABC边BA上一动点(点D)与点B不重合,连接CD,以CD为边在BC上方作等边三角形DCE,连接AE,你能发现AE与BD之间的数量关系吗?并证明你发现的结论.
(2)如图二,当动点D在等边三角形ABC边BA上运动时(点D与点B不重合),连接DC,以DC为边在其上方、下方分别作等边三角形DCE和等边三角形DCF,连接AE,BF,探究AE,BF与AB有何数量关系?并证明你探究的结论.
(3)如图三,当动点D在等边三角形ABC边BA的延长线上运动时,其他作法与图2相同,若AE=8,BF=2,请直接写出AB= .

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,∠1=∠2,∠C=∠D。
求证:∠A=∠F。

证明:∵∠1=∠2(已知),
又∠1=∠DMN(_______________),
∴∠2=∠_________(等量代换),
∴DB∥EC( ),
∴∠DBC+∠C=1800(两直线平行 , ),
∵∠C=∠D( ),
∴∠DBC+ =1800(等量代换),
∴DF∥AC( ,两直线平行),
∴∠A=∠F( )
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,∠ACB=90°,∠ABC=60°,AB=12cm,将△ABC以点B为中心顺时针旋转,使点C旋转到AB边延长线上的点D处,则AC边扫过的图形(阴影部分)的面积是cm2 . (结果保留π).

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2,将△ABC绕点C按顺时针方向旋转n度后,得到△EDC,此时,点D在AB边上,斜边DE交AC边于点F,则n的大小和图中阴影部分的面积分别为 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线AB,CD相交于O点,OM⊥AB.
(1)若∠1=∠2,求∠NOD;
(2)若∠1=
∠BOC,求∠AOC与∠MOD. 
相关试题