【题目】如图,在平面直角坐标系中,直线AB与x轴,y轴分别交于点A(6,0),B(0,8),点C的坐标为(0,m),过点C作CE⊥AB于点E,点D为x轴上的一动点,连接CD,DE,以CD,DE为边作CDEF.![]()
(1)当0<m<8时,求CE的长(用含m的代数式表示);
(2)当m=3时,是否存在点D,使CDEF的顶点F恰好落在y轴上?若存在,求出点D的坐标;若不存在,请说明理由;
(3)点D在整个运动过程中,若存在唯一的位置,使得CDEF为矩形,请求出所有满足条件的m的值.
参考答案:
【答案】
(1)
解:∵A(6,0),B(0,8).
∴OA=6,OB=8.
∴AB=10,
∵∠CEB=∠AOB=90°,
又∵∠OBA=∠EBC,
∴△BCE∽△BAO,
∴
=
,即
=
,
∴CE=
﹣
m
(2)
解:∵m=3,
∴BC=8﹣m=5,CE=
﹣
m=3.
∴BE=4,
∴AE=AB﹣BE=6.
∵点F落在y轴上(如图2).
![]()
∴DE∥BO,
∴△EDA∽△BOA,
∴
=
即
=
.
∴OD=
,
∴点D的坐标为(
,0)
(3)
解:取CE的中点P,过P作PG⊥y轴于点G.
则CP=
CE=
﹣
m.
(Ⅰ)当m>0时,
①当0<m<8时,如图3.易证∠GCP=∠BAO,
![]()
∴cos∠GCP=cos∠BAO=
,
∴CG=CPcos∠GCP=
(
﹣
m)=
﹣
m.
∴OG=OC+CG=m+
﹣
m=
m+
.
根据题意得,得:OG=CP,
∴
m+
=
﹣
m,
解得:m=
;
②当m≥8时,OG>CP,显然不存在满足条件的m的值.
(Ⅱ)当m=0时,即点C与原点O重合(如图4).
![]()
(Ⅲ)当m<0时,
①当点E与点A重合时,(如图5),
![]()
易证△COA∽△AOB,
∴
=
,即
=
,
解得:m=﹣
.
②当点E与点A不重合时,(如图6).
![]()
OG=OC﹣CG=﹣m﹣(
﹣
m)
=﹣
m﹣
.
由题意得:OG=CP,
∴﹣
m﹣
=
﹣
m.
解得m=﹣
.
综上所述,m的值是
或0或﹣
或﹣
.
【解析】(1)首先证明△BCE∽△BAO,根据相似三角形的对应边的比相等即可求得;(2)证明△EDA∽△BOA,根据相似三角形的对应边的比相等即可求得;(3)分m>0,m=0和m<0三种情况进行讨论,当m=0时,一定成立,当m>0时,分0<m<8和m>8两种情况,利用三角函数的定义即可求解.当m<0时,分点E与点A重合和点E与点A不重合时,两种情况进行讨论.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AB为⊙O的直径,点C在⊙O上,延长BC至点D,使DC=CB,延长DA与⊙O的另一个交点为E,连接AC,CE.

(1)求证:∠B=∠D;
(2)若AB=4,BC﹣AC=2,求CE的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】在同一直角坐标系中,直线y=﹣x+3与y=3x﹣5相交于C点,分别与x轴交于A、B两点.P、Q分别为直线y=﹣x+3与y=3x﹣5上的点.
(1)求△ABC的面积;
(2)若P、Q关于原点成中心对称,求P点的坐标;
(3)若△QPC≌△ABC,求Q点的坐标. -
科目: 来源: 题型:
查看答案和解析>>【题目】某校举办八年级学生数学素养大赛,比赛共设四个项目:七巧板拼图,趣题巧解,数学应用,魔方复原,每个项目得分都按一定百分比折算后记入总分,下表为甲,乙,丙三位同学得分情况(单位:分)
七巧板拼图
趣题巧解
数学应用
魔方复原
甲
66
89
86
68
乙
66
60
80
68
丙
66
80
90
68
(1)比赛后,甲猜测七巧板拼图,趣题巧解,数学应用,魔方复原这四个项目得分分别按10%,40%,20%,30%折算记入总分,根据猜测,求出甲的总分;
(2)本次大赛组委会最后决定,总分为80分以上(包含80分)的学生获一等奖,现获悉乙,丙的总分分别是70分,80分.甲的七巧板拼图、魔方复原两项得分折算后的分数和是20分,问甲能否获得这次比赛的一等奖? -
科目: 来源: 题型:
查看答案和解析>>【题目】五一节,小丽独自一人去老家玩,家住在车站附近的姑姑到车站去接小丽.因为担心小丽下车后找不到路,姑姑一路小跑来到车站,结果客车晚点,休息一阵后,姑姑接到小丽,和小丽一起慢慢的走回了家.下列图象中,能反映以上过程中小丽姑姑离家的距离s与时间t的关系的大致图象是( )
A.
B.
C.
D. 
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知边长为2的正三角形ABC顶点A的坐标为(0,6),BC的中点D在y轴上,且在点A下方,点E是边长为2、中心在原点的正六边形的一个顶点,把这个正六边形绕中心旋转一周,在此过程中DE的最小值为( )

A.3
B.4﹣
C.4
D.6﹣2
-
科目: 来源: 题型:
查看答案和解析>>【题目】某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400 m2区域的绿化时,甲队比乙队少用4天.
(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?
(2)若学校每天需付给甲队的绿化费用是0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?
相关试题