【题目】某学校环保志愿者协会对该市城区的空气质量进行调查,从全年365天中随机抽取了80天的空气质量指数(AQI)数据,绘制出三幅不完整的统计图表.请根据图表中提供的信息解答下列问题:
AQI指数 | 质量等级 | 天数(天) |
0﹣50 | 优 | m |
51﹣100 | 良 | 44 |
101﹣150 | 轻度污染 | n |
151﹣200 | 中度污染 | 4 |
201﹣300 | 重度污染 | 2 |
300以上 | 严重污染 | 2 |
(1 )统计表中m= ,n= .扇形统计图中,空气质量等级为“良”的天数占 %;
(2)补全条形统计图,并通过计算估计该市城区全年空气质量等级为“优”和“良”的天数共多少天?
(3)据调查,严重污染的2天发生在春节期间,燃放烟花爆竹成为空气污染的一个重要原因,据此,请你提出一条合理化建议.
![]()
参考答案:
【答案】(1)20,8,55;(2)292,统计图见解析;(3)提出合理建议,比如不燃放烟花爆竹或少燃放烟花爆竹等,合理即可.
【解析】
试题分析:(1)由A占25%,即可求得m的值,继而求得n的值,然后求得空气质量等级为“良”的天数占的百分比;(2)首先由(1)补全统计图,然后利用样本估计总体的知识求解即可求得答案;(3)提出合理建议,比如不燃放烟花爆竹或少燃放烟花爆竹等.
试题解析:解:(1)∵m=80×25%=20,n=80﹣20﹣44﹣4﹣2﹣2=8,
∴空气质量等级为“良”的天数占:
×100%=55%.
(2)估计该市城区全年空气质量等级为“优”和“良”的天数共:365×(25%+55%)=292(天),
答:估计该市城区全年空气质量等级为“优”和“良”的天数共292天;
补全统计图:
![]()
(3)建议不要燃放烟花爆竹.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某班去体育用品商店购买羽毛球和羽毛球拍,每只羽毛球2元,每副羽毛球拍25元.甲商店说:“羽毛球拍和羽毛球都打9折优惠”,乙商店说:“买一副羽毛球拍赠2只羽毛球”.
(1)该班如果买2副羽毛球拍和20只羽毛球,问在甲、乙两家商店各需花多少钱?
(2)该班如果准备花90元钱全部用于买2副羽毛球拍和若干只羽毛球,请问到哪家商店购买更合算?
(3)该班如果必须买2副羽毛球拍,问当买多少只羽毛球时到两家商店购买同样合算?
-
科目: 来源: 题型:
查看答案和解析>>【题目】填空,将本题补充完整. 如图,已知EF∥AD,∠1=∠2,∠BAC=70°.将求∠AGD的过程填写完整.
解:∵EF∥AD(已知)
∴∠2=()
又∵∠1=∠2(已知)
∴∠1=(等量代换)
∴AB∥GD()
∴∠BAC+=180°()
∵∠BAC=70°(已知)
∴∠AGD= .
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列多项式乘法中不能用平方差公式计算的是( )
A.(2x2y﹣1)(﹣2x2﹣1)
B.(a3﹣b3)(b3﹣a3)
C.(a+b)(a﹣b)
D.(a2+b2)(b2﹣a2) -
科目: 来源: 题型:
查看答案和解析>>【题目】我们知道a+b=0时,a3+b3=0也成立,若将a看成a3的立方根,b看成b3的立方根,我们能否得出这样的结论:若两个数的立方根互为相反数,则这两个数也互为相反数.
(1)试举一个例子来判断上述猜测结论是否成立;
(2)若
与
互为相反数,求
的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】某校去年对实验器材的投资为2万元,预计今明两年的投资总额为8万元,若设该校今明两年在实验器材投资上的平均增长率是x,则可列方程为( )
A.2(1+x)2=8B.2(1﹣x)2=8
C.2+2(1+x)+2(1+x)2=8D.2(1+x)+2(1+x)2=8
-
科目: 来源: 题型:
查看答案和解析>>【题目】找规律
(1)先阅读,再填空: (x+5)(x+6)=x2+11x+30;
(x﹣5)(x﹣6)=x2﹣11x+30;
(x﹣5)(x+6)=x2+x﹣30;
(x+5)(x﹣6)=x2﹣x﹣30.
观察上面的算式,根据规律,直接写出下列各式的结果:
(a+90)(a﹣100)=; (y﹣80)(y﹣90)= .
(2)先阅读,再填空:(x﹣1)(x+1)=x2﹣1;(x﹣1)(x2+x+1)=x3﹣1;(x﹣1)(x3+x2+x+1)=x4﹣1;(x﹣1)(x4+x3+x2+x+1)=x5﹣1. 观察上面各式:①由此归纳出一般性规律:(x﹣1)(xn﹣1+xn﹣2+xn﹣3+…+x2+x+1)=;
②根据①直接写出1+3+32+…+367+368的结果 .
相关试题