【题目】如下图,点
是
的中点,
,
,
平分
,下列结论:
①
②
③
④![]()
四个结论中成立的是( )
![]()
A.①②④B.①②③C.②③④D.①③④
参考答案:
【答案】A
【解析】
过E作EF⊥AD于F,易证得Rt△AEF≌Rt△AEB,得到BE=EF,AB=AF,∠AEF=∠AEB;而点E是BC的中点,得到EC=EF=BE,则可证得Rt△EFD≌Rt△ECD,得到DC=DF,∠FDE=∠CDE,也可得到AD=AF+FD=AB+DC,∠AED=∠AEF+∠FED=
∠BEC=90°,即可判断出正确的结论.
过E作EF⊥AD于F,如图,
∵AB⊥BC,AE平分∠BAD,
∴Rt△AEF≌Rt△AEB
∴BE=EF,AB=AF,∠AEF=∠AEB;
而点E是BC的中点,
∴EC=EF=BE,所以③错误;
∴Rt△EFD≌Rt△ECD,
∴DC=DF,∠ADE=∠CDE,所以②正确;
∴AD=AF+FD=AB+DC,所以④正确;
∴∠AED=∠AEF+∠FED=
∠BEC=90°,所以①正确.
故选A.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】勾股定理是一个基本的几何定理,早在我国西汉吋期算书《周髀算经》就有“勾三股四弦五”的记载.如果一个直角三角形三边长都是正整数,这样的直角三角形叫“整数直角三角形”;这三个整数叫做一组“勾股数”,如:3,4,5;5,12,13;7,24,25;8,15,17;9,40,41等等都是勾股数.
(1)小李在研究勾股数时发现,某些整数直角三角形的斜边能写成两个整数的平方和,有一条直角边能写成这两个整数的平方差.如3,4,5中,5=22+12,3=22﹣12;5,12,13中,13=32+22,5=32﹣22;请证明:m,n为正整数,且m>n,若有一个直角三角形斜边长为m2+n2,有一条直角长为m2﹣n2,则该直角三角形一定为“整数直角三角形”;
(2)有一个直角三角形两直角边长分别为
和
,斜边长4
,且a和b均为正整数,用含b的代数式表示a,并求出a和b的值;(3)若c1=a12+b12,c2=a22+b22,其中,a1、a2、b1、b2均为正整数.证明:存在一个整数直角三角形,其斜边长为c1c2.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如下图,
,
,
平分
,
平分
,则
( )
A.
B.
C.
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知,二氧化碳气体的密度 ρ(kg/m 3)与体积 V(m 3)的反比例函数关系式是
. (1)求当 V=5m 3时二氧化碳的密度 ρ;
(2)请写出二氧化碳的密度 ρ随体积 V的增大(或减小)而变化的情况.
-
科目: 来源: 题型:
查看答案和解析>>【题目】一场暴雨过后,一洼地存雨水20米 3,如果将雨水全部排完需 t分钟,排水量为 a米 3/分,且排水时间为5~10分钟
(1)试写出 t与 a的函数关系式,并指出 a的取值范围;
(2)请画出函数图象
(3)根据图象回答:当排水量为3米 3/分时,排水的时间需要多长?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图①,抛物线y=
x2﹣
x﹣3
交轴于A、B两点,交y轴于点C,点D为点C关于抛物线对称轴的对称点.(1)若点P是抛物线上位于直线AD下方的一个动点,在y轴上有一动点E,x轴上有一动点F,当△PAD的面积最大时,一动点G从点P出发以每秒1个单位的速度沿P→E→F的路径运动到点F,再沿线段FB以每秒2个单位的速度运动到B点后停止,当点F的坐标是多少时,动点G的运动过程中所用的时间最少?
(2)如图②,在(1)问的条件下,将抛物线沿直线PB进行平移,点P、B平移后的对应点分别记为点P'、B',请问在y轴上是否存在一动点Q,使得△P'QB'为等腰直角三角形?若存在,请直接写出所有符合条件的Q点坐标;若不存在,请说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是

A.AB∥DC,AD∥BC B.AB=DC,AD=BC
C.AO=CO,BO=DO D.AB∥DC,AD=BC
相关试题