【题目】如图,已知点A(3,0),以A为圆心作⊙A与Y轴切于原点,与x轴的另一个交点为B,过B作⊙A的切线l.![]()
(1)以直线l为对称轴的抛物线过点A及点C(0,9),求此抛物线的解析式;
(2)抛物线与x轴的另一个交点为D,过D作⊙A的切线DE,E为切点,求DE的长;
(3)点F是切线DE上的一个动点,当△BFD与△EAD相似时,求出BF的长 .
参考答案:
【答案】
(1)解:由题意可知,抛物线的对称轴为:x=6
∴设抛物线的解析式为 ![]()
∵抛物线经过点A(3,0)和C(0,9)
∴ ![]()
解得:
,k=-3
∴ ![]()
(2)解:连接AE
![]()
∵DE是⊙A的切线,∴∠AED=90°,AE=3
∵直线l是抛物线的对称轴,点A,D是抛物线与x轴的交点
∴AB=BD=3
∴AD=6
在Rt△ADE中, ![]()
∴ ![]()
(3)解:)当BF⊥ED时∵∠AED=∠BFD=90°∠ADE=∠BDF
∴△AED∽△BFD
∴
即 ![]()
∴ ![]()
当FB⊥AD时∵∠AED=∠FBD=90°∠ADE=∠FDB
∴△AED∽△FBD ∴
即 ![]()
∴当△BFD与EAD△相似时,BF的长为
或 ![]()
【解析】(1)根据题意可知此抛物线的对称轴为x=6,设抛物线的解析式为顶点式,再将点A、C两点坐标代入解析式,建立方程求解,即可求出此函数解析式。
(2) 由DE是⊙A的切线,因此添加辅助线连接AE,得出∠AED=90°,AE=3 ,再根据圆的对称性及抛物线的对称性,求出AD的长, 在Rt△ADE中,利用勾股定理求出DE的长。
(3)抓住已知点F是切线DE上的一个动点,要使△BFD与△EAD相似,图形中隐含公共角∠ADE=∠BDF,因此分两种情况:当BF⊥ED时;当FB⊥AD时,根据相似三角形的性质,得出对应边成比例,建立方程,即可求出BF的长。
【考点精析】掌握二次函数的性质和勾股定理的概念是解答本题的根本,需要知道增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小;直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知
是
的直径,过点
作弦
的平行线,交过点
的切线
于点
,连结
.
(1)求证:
;
(2)若
,
,求
的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】类比、转化、从特殊到一般等思想方法,在数学学习和研究中经常用到,如下是一个案例,请补充完整,原题:如图1,在平行四边形ABCD中,点E是BC的中点,点F是线段AE上一点,BF的延长线交射线CD于点G. 若
, 求
的值.
(1)尝试探究:
在图1中,过点E作EH∥AB交BG于点H,则AB和EH的数量关系是 ,
CG和EH的数量关系是 ,
的值是 .
(2)类比延伸:如图2,在原题条件下,若
(m>0)则
的值是(用含有m的代数式表示),试写出解答过程 .
(3)拓展迁移:如图3,梯形ABCD中,DC∥AB,点E是BC的延长线上的一点,AE和BD相交于点F,若
(a>0,b>0)则
的值是(用含a、b的代数式表示). -
科目: 来源: 题型:
查看答案和解析>>【题目】已知数轴上的点A和点B之间的距离为28个单位长度,点A在原点左边,距离原点8个单位长度,点B在原点的右边.
(1)请直接写出A,B两点所对应的数.
(2)数轴上点A以每秒1个单位长度的速度出发向左运动,同时点B以每秒3个单位长度的速度出发向左运动,在点C处追上了点A,求C点对应的数.
(3)已知,数轴上点M从点A向左出发,速度为每秒1个单位长度,同时点N从点B向左出发,速度为每秒2个单位长度,经t秒后点M、N、O(O为原点)其中的一点恰好到另外两点的距离相等,求t的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某商场国庆节搞促销活动,购物不超过200元不给优惠,超过200(不含200元)元而不足500元,所有商品按购物价优惠10%,超过500元的,其中500元按9折优惠,超过的部分按8折优惠,A,B两个商品价格分别为180元,550元。
(1) 某人第一次购买一件A商品,第二次购买一件B商品,实际共付款多少元?
(2) 若此人一次购物购买A,B商品各一件,则实际付款多少钱?
(3) 国庆期间,某人在该商场两次购物分别付款180元和550元,如果他合起来一次性购买同样的商品,还可节约多少钱?
-
科目: 来源: 题型:
查看答案和解析>>【题目】小明有5张写着不同的数字的卡片,请你按要求抽出卡片,完成下列各问题:

(1)从中取出2张卡片,使这2张卡片上数字乘积最大,最大值是 ;
(2)从中取出2张卡片,使这2张卡片上数字相除的商最小,最小值是 ;
(3)从中取出4张卡片,用学过的运算方法,使结果为24.写出运算式子:
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,长方形ABCD中,点A(﹣4,1)、B(0,1)、C(0,3),
(1)过O的直线l和经过AC的直线平行,求直线l表达式;
(2)已知在平面直角坐标系中,过一点分别作坐标轴的垂线,若与坐标轴围成矩形的周长与面积相等,则这个点叫做和谐点.在直线l上是否存在点P为和谐点?若存在,求出点P坐标,若不存在,请说明理由.

相关试题