【题目】某家电销售商场电冰箱的销售价为每台2100元,空调的销售价为每台1750元,每台电冰箱的进价比每台空调的进价多400元,商场用80000元购进电冰箱的数量与用64000元购进空调的数量相等.
(1)求每台电冰箱与空调的进价分别是多少?
(2)现在商场准备一次购进这两种家电共100台,设购进电冰箱x台,这100台家电的销售总利润为y元,要求购进空调数量不超过电冰箱数量的2倍,总利润不低于13200元,请分析合理的方案共有多少种?并确定获利最大的方案以及最大利润.
参考答案:
【答案】
(1)解:设每台空调的进价为m元,则每台电冰箱的进价为(m+400)元,
根据题意得:
=
,
解得:m=1600,
经检验,m=1600是原方程的解,
∴m+400=1600+400=2000
(2)解:设购进电冰箱x台(x为正整数),这100台家电的销售总利润为y元,
则y=(2100﹣2000)x+(1750﹣1600)(100﹣x)=﹣50x+15000,
根据题意得:
,
解得:33
≤x≤36,
∵x为正整数,
∴x=34,35,36,
∴合理的方案共有3种,
即①电冰箱34台,空调66台;
②电冰箱35台,空调65台;
③电冰箱36台,空调64台;
∵y=﹣50x+15000,k=﹣50<0,
∴y随x的增大而减小,
∴当x=34时,y有最大值,最大值为:﹣50×34+15000=13300(元)
【解析】(1)设每台空调的进价为m元,则每台电冰箱的进价为(m+400)元,根据数量=总价÷单价结合80000元购进电冰箱的数量与用64000元购进空调的数量相等即可得出关于m的分式方程,解之即可得出结论;(2)设购进电冰箱x台(x为正整数),这100台家电的销售总利润为y元,根据总利润=电冰箱的总利润+空调总利润即可得出y关于x的函数关系式,结合“购进空调数量不超过电冰箱数量的2倍,总利润不低于13200元”即可得出关于x的一元一次不等式组,解之即可得出x的取值范围,取其内的正整数即可得出所有购买方案,再根据一次函数的性质即可解决最值问题.
【考点精析】关于本题考查的分式方程的应用和一元一次不等式组的应用,需要了解列分式方程解应用题的步骤:审题、设未知数、找相等关系列方程、解方程并验根、写出答案(要有单位);1、审:分析题意,找出不等关系;2、设:设未知数;3、列:列出不等式组;4、解:解不等式组;5、检验:从不等式组的解集中找出符合题意的答案;6、答:写出问题答案才能得出正确答案.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△BCE中,点A是边BE上一点,以AB为直径的⊙O与CE相切于点D,AD∥OC,点F为OC与⊙O的交点,连接AF.

(1)求证:CB是⊙O的切线;
(2)若∠ECB=60°,AB=6,求图中阴影部分的面积. -
科目: 来源: 题型:
查看答案和解析>>【题目】某校八年级在一次广播操比赛中,三个班的各项得分如下表:
服装统一
动作整齐
动作准确
八(1)班
80
84
87
八(2)班
97
78
80
八(3)班
90
78
85
(1) 填空:根据表中提供的信息,在服装统一方面,三个班得分的平均数是_________;在动作准确方面最有优势的是_________班
(2) 如果服装统一、动作整齐、动作准确三个方面按20%、30%、50%的比例计算各班的得分,请通过计算说明哪个班的得分最高
-
科目: 来源: 题型:
查看答案和解析>>【题目】(11·湖州)(本小题10分)
如图,已知E、F分别是□ABCD的边BC、AD上的点,且BE=DF。
⑴求证:四边形AECF是平行四边形;
⑵若BC=10,∠BAC=90°,且四边形AECF是菱形,求BE的长。

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知
,
,
,试说明:BE∥CF.完善下面的解答过程,并填写理由或数学式:
解:∵
(已知)∴AE∥ ( )
∴
( )∵
(已知)∴
( )∴DC∥AB( )
∴
( )即

∵
(已知)∴
( )即

∴BE∥CF( ) .

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线
与x轴交于点A,与y轴交于点B,与直线y=x交于点E,点E的横坐标为3(1) 求点A的坐标
(2) 在x轴上有一点P(m,0),过点P作x轴的垂线,与直线
交于点C,与直线y=x 交于点D.若CD≥4,则m的取值范围为___________________
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知A,B分别为数轴上的两点,点A表示的数是﹣30,点B表示的数是50.

(1)请写出线段AB中点M表示的数是 .
(2)现有一只蚂蚁P从点B出发,以每秒3个单位长度的速度沿数轴向左移动,同时另一只蚂蚁Q恰好从点A出发,以每秒2个单位长度的速度沿数轴向右移动,设两只蚂蚁在数轴上的点C相遇.
①求A、B两点间的距离;
②求两只蚂蚁在数轴上的点C相遇时所用的时间;
③求点C对应的数是多少?
(3)若蚂蚁P从点B出发,以每秒3个单位长度的速度沿数轴向左运动,同时另一只蚂蚁恰好从A点出发,以每秒2个单位长度的速度沿数轴也向左运动,设两只蚂蚁在数轴上的D点相遇,求D点表示的数是多少?
相关试题