【题目】在平面直角坐标系xOy中,⊙O的半径为1,P是坐标系内任意一点,点P到⊙O的距离SP的定义如下:若点P与圆心O重合,则SP为⊙O的半径长;若点P与圆心O不重合,作射线OP交⊙O于点A,则SP为线段AP的长度.
图1为点P在⊙O外的情形示意图.![]()
(1)若点B(1,0),C(1,1),D(0,
),则SB=;SC=;SD=;
(2)若直线y=x+b上存在点M,使得SM=2,求b的取值范围;
(3)已知点P,Q在x轴上,R为线段PQ上任意一点.若线段PQ上存在一点T,满足T在⊙O内且ST≥SR , 直接写出满足条件的线段PQ长度的最大值.
参考答案:
【答案】
(1)0,
-1,![]()
(2)解:设直线y=x+b与分别与x轴、y轴交于F、E,
作OG⊥EF于G,
![]()
∵∠FEO=45°,
∴OG=GE,
当OG=3时,GE=3,
由勾股定理得,OE=3
,
此时直线的解析式为:y=x+3
,
∴直线y=x+b上存在点M,使得SM=2,b的取值范围是﹣3
≤b≤3 ![]()
(3)解:∵T在⊙O内,
∴ST≤1,
∵ST≥SR,
∴SR≤1,
∴线段PQ长度的最大值为1+2+1=4.
【解析】(1)根据已知点的坐标和新定义,求解即可。
(2)根据直线y=x+b的特点,结合SM=2,根据等腰直角三角形的性质和勾股定理解答。
(3)根据T在⊙O内,得出ST的范围,根据给出的条件ST≥SR、结合图形求出满足条件的线段PQ长度的最大值。
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,点O为坐标原点,点
在第一象限,过点A向x轴作垂线,垂足为点B,连接OA,
,点M从O出发,沿y轴的正半轴以每秒2个单位长度的速度运动,点N从点B出发以每秒3个单位长度的速度向x轴负方向运动,点M与点N同时出发,设点M的运动时间为t秒,连接AM,AN,MN.
求a的值;
当
时,
请探究
,
,
之间的数量关系,并说明理由;
试判断四边形AMON的面积是否变化?若不变化,请求出其值;若变化,请说明理由.
当
时,请求出t的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某服装店用4400元购进A,B两种新式服装,按标价售出后可获得毛利润2800元(毛利润=售价﹣进价),这两种服装的进价,标价如表所示.
类型价格
A型
B型
进价(元/件)
60
100
标价(元/件)
100
160
(1)请利用二元一次方程组求这两种服装各购进的件数;
(2)如果A种服装按标价的9折出售,B种服装按标价的8折出售,那么这批服装全部售完后,服装店比按标价出售少收入多少元?
-
科目: 来源: 题型:
查看答案和解析>>【题目】为了更好改善河流的水质,治污公司决定购买10台污水处理设备
现有A,B两种型号的设备,其中每台的价格,月处理污水量如下表:经调查:购买一台A型设备比购买一台B型设备多2万元,购买2台A型设备比购买3台B型设备少6万元.A型
B型
价格
万元
台
a
b
处理污水量
吨
月
240
200
求a,b的值;
治污公司经预算购买污水处理设备的资金不超过105万元,你认为该公司有哪几种购买方案;
在
的条件下,若每月要求处理污水量不低于2040吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案. -
科目: 来源: 题型:
查看答案和解析>>【题目】对非负实数x“四舍五入”到个位的值记为<x>,即当n为非负整数时,若
,则<x>=n,如<0.46>=0,<3.67>=4。给出下列关于<x>的结论:①<1.493>=1;
②<2x>=2<x>;
③若
,则实数x的取值范围是
;④当x≥0,m为非负整数时,有
;⑤
。其中,正确的结论有 (填写所有正确的序号)。
-
科目: 来源: 题型:
查看答案和解析>>【题目】解方程(组)
(1)5x﹣2=3x+8;(2)
;(3)
;(4)
. -
科目: 来源: 题型:
查看答案和解析>>【题目】在解不等式|x+1|>2时,我们可以采用下面的解答方法:
①当x+1≥0时,|x+1|=x+1.
∴由原不等式得x+1>2.∴可得不等式组

∴解得不等式组的解集为x>1.
②当x+1<0时,|x+1|=﹣(x+1).
∴由原不等式得﹣(x+1)>2.∴可得不等式组

∴解得不等式组的解集为x<﹣3.
综上所述,原不等式的解集为x>1或x<﹣3.
请你仿照上述方法,尝试解不等式|x﹣2|≤1.
相关试题