【题目】如图,两艘海监船刚好在某岛东西海岸线上的A、B两处巡逻,同时发现一艘不明国籍船只停在C处海域,AB=60(
+3)海里,在B处测得C在北偏东45°方向上,A处测得C在北偏西30°方向上,在海岸线AB上有一等他D,测得AD=100海里.
(1)分别求出AC,BC(结果保留根号)
(2)已知在灯塔D周围80海里范围内有暗礁群,在A处海监船沿AC前往C处盘看,图中有无触礁的危险?请说明理由.
![]()
参考答案:
【答案】A与C的距离为120
海里,B与C的距离为180
海里;(2)无触礁危险.
【解析】试题分析:(1)、过点C作CE⊥AB于点E,可得∠CBD=45°,∠CAD=60°,设CE=x,根据Rt△CAE的三角函数得出AE=
,最后根据AB=BE+AE求出x的值,最后根据直角三角形的三角函数求出答案;(2)、过点D作DF⊥AC于点F,根据Rt△ADF的三角函数求出DF的长度,然后与80进行比较大小,从而得出答案.
试题解析:(1)、如图所示,过点C作CE⊥AB于点E,可得∠CBD=45°,∠CAD=60°,
设CE=x,在Rt△CBE中,BE=CE=x,
在Rt△CAE中,
,即AE=CE·tan30°,∴AE= ![]()
∵AB=60(
+3)海里,∴AB=BE+AE=x+
=60(
),即x=180海里,
则AC=
海里, BC=
x=180
海里;
答:A与C的距离为120
海里,B与C的距离为180
海里;
(2)、无触礁危险.
如图所示,过点D作DF⊥AC于点F,在△ADF中,∵AD=100,∠CAD=60°,∴DF=ADsin60°=50
≈86.6>80,故海监船沿AC前往C处盘查,无触礁危险.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC的边AB,AC的外侧分别作等边△ABD和等边△ACE,连接DC,BE.
(1)求证:DC=BE;
(2)若BD=3,BC=4, BD⊥BC于点B,请求出△ABC的面积.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,A、B、C是直线l上的三个点,∠DAB=∠DBE=∠ECB=a,且BD=BE.
(1)求证:AC=AD+CE;
(2)若a=120°,点F在直线l的上方,△BEF为等边三角形,补全图形,请判断△ACF的形状,并说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】有甲乙两名采购员去同一家饲料公司分别购买两次饲料,两次购买饲料价格分别为m元/千克和n元/千克,且m≠n,两名采购员的采购方式也不同,其中甲每次购买1000千克,乙每次用去800元,而不管购买多少饲料.
(1)甲、乙所购饲料的平均单价各是多少?(用字母m、n表示)
(2)谁的购货方式更合算?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,以AC边为直径作⊙O交BC边于点D,交AB于点G,且D是BC中点,DE⊥AB,交AB于点E,交AC的延长线交于点F.
(1)求证:直线EF是⊙O的切线.
(2)若CF=3,cos∠CAB=
,求⊙O的半径和线段BD的长.
-
科目: 来源: 题型:
查看答案和解析>>【题目】从三角形一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,若分得的两个小三角形中一个三角形为等腰三角形,另一个三角形的三个内角与原来三角形的三个内角分别相等,则称这条线段叫做这个三角形的“等角分割线”.
例如,等腰直角三角形斜边上的高就是这个等腰直角三角形的一条“等角分割线”.

(1)如图1,在△ABC中,D是边BC上一点,若∠B=30°,∠BAD=∠C=40°,求证: AD为△ABC的“等角分割线”;
(2)如图2,△ABC中,∠C=90°,∠B=30°;
①画出△ABC的“等角分割线”,写出画法并说明理由;
②若BC=3,求出①中画出的“等角分割线”的长度.
(3)在△ABC中,∠A=24°,若△ABC存在“等角分割线”CD,直接写出所有符合要求的∠B的度数.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图是常见的安全标记,其中是轴对称图形的是( )
A.
B.
C.
D. 
相关试题