【题目】在如图所示的平面直角坐标系内,画在透明胶片上的ABCD,点A的坐标是(0,2).现将这张胶片平移,使点A落在点A′(5,﹣1)处,则此平移可以是( )![]()
A.先向右平移5个单位,再向下平移1个单位
B.先向右平移5个单位,再向下平移3个单位
C.先向右平移4个单位,再向下平移1个单位
D.先向右平移4个单位,再向下平移3个单位
参考答案:
【答案】B
【解析】解:根据A的坐标是(0,2),点A′(5,﹣1),
横坐标加5,纵坐标减3得出,故先向右平移5个单位,再向下平移3个单位,
故选:B.
【考点精析】通过灵活运用坐标与图形变化-平移,掌握新图形的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点;连接各组对应点的线段平行且相等即可以解答此题.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知,如图1,△ABC中,BA=BC,D是平面内不与A、B、C重合的任意一点,∠ABC=∠DBE,BD=BE.

(1)求证:△ABD≌△CBE;
(2)如图2,当点D是△ABC的外接圆圆心时,请判断四边形BDCE的形状,并证明你的结论. -
科目: 来源: 题型:
查看答案和解析>>【题目】某汽车在刹车后行驶的距离s(单位:米)与时间t(单位:秒)之间的关系得部分数据如下表:
时间t(秒)
0
0.2
0.4
0.6
0.8
1.0
1.2
…
行驶距离s(米)
0
2.8
5.2
7.2
8.8
10
10.8
…
假设这种变化规律一直延续到汽车停止.

(1)根据这些数据在给出的坐标系中画出相应的点;
(2)选择适当的函数表示s与t之间的关系,求出相应的函数解析式;
(3)①刹车后汽车行驶了多长距离才停止? ②当t分别为t1 , t2(t1<t2)时,对应s的值分别为s1 , s2 , 请比较
与
的大小,并解释比较结果的实际意义. -
科目: 来源: 题型:
查看答案和解析>>【题目】定义:P、Q分别是两条线段a和b上任意一点,线段PQ的长度的最小值叫做线段a与线段b的距离. 已知O(0,0),A(4,0),B(m,n),C(m+4,n)是平面直角坐标系中四点.

(1)根据上述定义,当m=2,n=2时,如图1,线段BC与线段OA的距离是;当m=5,n=2时,如图2,线段BC与线段OA的距离为;
(2)如图3,若点B落在圆心为A,半径为2的圆上,线段BC与线段OA的距离记为d,求d关于m的函数解析式.
(3)当m的值变化时,动线段BC与线段OA的距离始终为2,线段BC的中点为M, ①求出点M随线段BC运动所围成的封闭图形的周长;
②点D的坐标为(0,2),m≥0,n≥0,作MH⊥x轴,垂足为H,是否存在m的值使以A、M、H为顶点的三角形与△AOD相似?若存在,求出m的值;若不存在,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AD为⊙O的直径,作⊙O的内接正三角形ABC,甲、乙两人的作法分别是: 甲:①、作OD的中垂线,交⊙O于B,C两点,
②、连接AB,AC,△ABC即为所求的三角形
乙:①、以D为圆心,OD长为半径作圆弧,交⊙O于B,C两点.
②、连接AB,BC,CA.△ABC即为所求的三角形.
对于甲、乙两人的作法,可判断( )
A.甲、乙均正确
B.甲、乙均错误
C.甲正确、乙错误
D.甲错误,乙正确 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,扇形DOE的半径为3,边长为
的菱形OABC的顶点A,C,B分别在OD,OE,
上,若把扇形DOE围成一个圆锥,则此圆锥的高为( ) 
A.
B.
C.
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直角三角形纸片ABC中,AB=3,AC=4,D为斜边BC中点,第1次将纸片折叠,使点A与点D重合,折痕与AD交于点P1;设P1D的中点为D1 , 第2次将纸片折叠,使点A与点D1重合,折痕与AD交于点P2;设P2D1的中点为D2 , 第3次将纸片折叠,使点A与点D2重合,折痕与AD交于点P3;…;设Pn﹣1Dn﹣2的中点为Dn﹣1 , 第n次将纸片折叠,使点A与点Dn﹣1重合,折痕与AD交于点Pn(n>2),则AP6的长为( )

A.
B.
C.
D.
相关试题