【题目】如图,△ABC中,∠ACB=90°,点F在AC延长线上,
,DE是△ABC中位线,如果∠1=30°,DE=2,则四边形AFED的周长是________
![]()
参考答案:
【答案】16.
【解析】
试题根据三角形的中位线平行于第三边并且等于第三边的一半可得DE=
AC,从而得到CF=DE,再根据直角三角形30°角所对的直角边等于斜边的一半可得EF=2CF,利用勾股定理列式求出CE,再求出BC,然后利用勾股定理列式求出AB,从而得到AD的长度,最后根据四边形的周长的定义列式计算即可得解:
∵DE是△ABC中位线,∴DE=
AC.
∵CF=
AC,∴CF=DE=2.
∵∠1=30°,∠ACB=90°,∴EF=2CF=2×2=4.
由勾股定理得,
.
∴BC=2CE=
.
又∵AC=2DE=2×2=4,
∴
.
∴AD=
AB=4,
∴四边形AFED的周长=4+(4+2)+4+2=16.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某学校随机抽取部分学生,调查每个月的零花钱消费额,数据整理成如下的统计表和如图①②所示的两幅不完整的统计图,已知图①中A,E两组对应的小长方形的高度之比为2:1请结合相关数据解答以下问题:

(1)本次调查样本的容量是______;
(2)补全频数分布直方图,并标明各组的频数;
(3)若该学校有2500名学生,请估计月消费零花钱不少于300元的学生的数量.
-
科目: 来源: 题型:
查看答案和解析>>【题目】我国中东部地区雾霾天气趋于严重,环境治理已刻不容缓.我市某电器商场根据民众健康需要,代理销售某种家用空气净化器,其进价是200元/台.经过市场销售后发现:在一个月内,当售价是400元/台时,可售出200台,且售价每降低10元,就可多售出50台.若供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售任务.
(1)试确定月销售量y(台)与售价x(元/台)之间的函数关系式;并求出自变量x的取值范围;
(2)当售价x(元/台)定为多少时,商场每月销售这种空气净化器所获得的利润w(元)最大?最大利润是多少?
-
科目: 来源: 题型:
查看答案和解析>>【题目】五一期间,某商场计划购进甲、乙两种商品,已知购进甲商品1件和乙商品3件共需240元;购进甲商品2件和乙商品1件共需130元.
(1)求甲、乙两种商品每件的进价分别是多少元?
(2)商场决定甲商品以每件40元出售,乙商品以每件90元出售,为满足市场需求,需购进甲、乙两种商品共100件,且甲种商品的数量不少于乙种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在五边形ADBCE中,∠ADB=∠AEC=90°,∠DAB=∠EAC,M、N、O分别为AC、AB、BC的中点.
(1)求证:△EMO≌△OND;
(2)若AB=AC,且∠BAC=40°,当∠DAB等于多少时,四边形ADOE是菱形,并证明.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,图1中ΔABC是等边三角形,DE是中位线,F是线段BC延长线上一点,且CF=AE,连接BE,EF.

图1 图2
(1)求证:BE=EF;
(2)若将DE从中位线的位置向上平移,使点D、E分别在线段AB、AC上(点E与点A不重合),其他条件不变,如图2,则(1)题中的结论是否成立?若成立,请证明;若不成立.请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,已知点A的坐标是(a,0),点B的坐标是(b,0),其中a,b满足
.
(1)填空:a=______,b=_______;
(2)在
轴负半轴上有一点M(0,m),三角形ABM的面积为4.①求m的值;
②将线段AM沿x轴正方向平移,使得A的对应点为B,M的对应点为N. 若点P为线段AB上的任意一点(不与A,B重合),试写出∠MPN,∠PMA,∠PNB之间的数量关系,并说明理由.
相关试题