【题目】(1)如图是一个4×4的正方形网格,每个小正方形的边长均为1.请在网格中以左上角的三角形为基本图形,通过平移、对称或旋转,设计两个精美图案,使其满足:①既是轴对称图形,又能以点
为旋转中心旋转而得到;②所作图案用阴影标识,且阴影部分面积为4.
![]()
(2)如图,
的三个顶点和点
都在正方形网格的格点上,每个小正方形的边长都为1.
![]()
①将
先向右平移4个单位,再向上平移2个单位得到
,请画出
;
②请画出
,使
和
关于点
成中心对称;
参考答案:
【答案】(1)见解析;(2)①见解析;②见解析.
【解析】
(1)根据轴对称图形的性质以及阴影部分面积求法得出即可,需要满足题目中的两个条件.(2)根据平移的性质和旋转的性质求解即可.
解:(1)如图所示,答案不唯一.(每画正确一个得3分)
![]()
(2)①所画
如图所示.
②所画
如图所示.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,已知直线y=﹣2x+4与两坐标轴分别交于点A、B,点C为线段OA上一动点,连接BC,作BC的中垂线分别交OB、AB交于点D、E.

(l)当点C与点O重合时,DE= ;
(2)当CE∥OB时,证明此时四边形BDCE为菱形;
(3)在点C的运动过程中,直接写出OD的取值范围.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且经A(1,0)、
B(0,﹣3)两点.(1)求抛物线的解析式;
(2)在抛物线的对称轴x=﹣1上,是否存在点M,使它到点A的距离与到点B的距离之和最小,如果存在求出点M的坐标,如果不存在请说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】定义:如果一个数的平方等于
,记为
,这个数
叫做虚数单位.那么和我们所学的实数对应起来就叫做复数,表示为
(
为实数),
叫这个复数的实部,
叫做这个复数的虚部,它的加,减,乘法运算与整式的加,减,乘法运算类似.例如计算:

(1)填空:
=_________,
=____________.(2)填空:①
_________; ②
_________ .(3)若两个复数相等,则它们的实部和虚部必须分别相等,完成下列问题:已知,
,(
为实数),求
的值.(4)试一试:请利用以前学习的有关知识将
化简成
的形式.(5)解方程:x2 - 2x +4 = 0
-
科目: 来源: 题型:
查看答案和解析>>【题目】某公交公司决定更换节能环保的新型公交车
购买的数量和所需费用如下表所示:A型数量
辆
B型数量
辆
所需费用
万元
3
1
450
2
3
650
求A型和B型公交车的单价;
该公司计划购买A型和B型两种公交车共10辆,已知每辆A型公交车年均载客量为60万人次,每辆B型公交车年均载客量为100万人次,若要确保这10辆公交车年均载客量总和不少于670万人次,则A型公交车最多可以购买多少辆? -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线
的图象过点C(0,1),顶点为Q(2,3),点D在x轴正半轴上,线段OD=OC.(1)求抛物线的解析式;
(2)抛物线上是否存在点M,使得△CDM是以CD为直角边的直角三角形?若存在,请求出M点的坐标;若不存在,请说明理由;
(3)将直线CD绕点C逆时针方向旋转45°所得直线与抛物线相交于另一点E,连接QE.若点P是线段QE上的动点,点F是线段OD上的动点,问:在P点和F点的移动过程中,△PCF的周长是否存在最小值?若存在,求出这个最小值,若不存在,请说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,四边形OABC是矩形,点A、C在坐标轴上,B点坐标(-2,4)△ODE是△OCB绕点O顺时针旋转90°得到的,点D在x轴上,直线BD交y轴于点F,交OE于点H.
(1) 求直线BD的解析式;
(2) 求△BCF的面积;
(3) 点M在坐标轴上,平面内是否存在点N,使以点D、F、M、N为顶点的四边形是矩形?若存在,请求出点N的坐标;若不存在,请说明理由.

相关试题