【题目】先阅读,再解答.
我们在判断点(-7,20)是否在直线y=2x+6上时,常用的方法是:把x=-7代入y=2x+6中,由2×(-7)+6=-8≠20,判断出点(-7,20)不在直线y=2x+6上.小明由此方法并根据“两点确定一条直线”,推断出点A(1,2),B(3,4),C(-1,6)三点可以确定一个圆,你认为他的推断正确吗?请你利用上述方法说明理由.
参考答案:
【答案】他的推断是正确的,理由详见解析.
【解析】试题分析:要证明点
三点是否可以确定一个圆,主要验证三点是否在一条直线上.即其中一点是否满足经过另外两点的直线的解析式.
试题解析:
他的推断是正确的.
因为“两点确定一条直线”,设经过A,B两点的直线的解析式为y=kx+b.
由A(1,2),B(3,4),得
解得![]()
∴经过A,B两点的直线的解析式为y=x+1.
把x=-1代入y=x+1中,
由-1+1≠6,可知点C(-1,6)不在直线AB上,
即A,B,C三点不在同一条直线上.
所以A,B,C三点可以确定一个圆.
-
科目: 来源: 题型:
查看答案和解析>>【题目】(1)把数轴补充完整.
(2)在数轴上表示下列各数.
(3)用“<”连接起来. .
(4)﹣|﹣2|与﹣4之间的距离是 .
3
,﹣4,﹣(﹣1.5),﹣|﹣2|
-
科目: 来源: 题型:
查看答案和解析>>【题目】把下列各数:
﹣3.1,3.1415,﹣
,+31,0.618,﹣
,0,﹣1,﹣(﹣3),填在相应的集合里分数集合: ;
整数集合: ;
非负整数集合: ;
正有理数集合: .
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,AB=AC=11,∠BAC=120°,AD是△ABC的中线,AE是∠BAD的角平分线,DF∥AB交AE的延长线于点E,则DF的长为( )

A. 4.5 B. 5 C. 5.5 D. 6
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在直角坐标系中,点A、B的坐标分别为(1,4)和(3,0),点C是y轴上的一个动点,且A、B、C三点不在同一条直线上,当△ABC的周长最小时,点C的坐标是

A.(0,0)B.(0,1)C.(0,2)D.(0,3)
-
科目: 来源: 题型:
查看答案和解析>>【题目】一个正多边形的每个内角都比与它相邻的外角的3倍还多20°,则此正多边形是_____ 边形,共有_____ 条对角线.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,Rt△ABC的内切圆⊙O与两直角边AB、BC分别相切于点D、E,过劣弧
(不包括端点D、E)上任一点作⊙O的切线MN与AB、BC分别交于点M、N.若⊙O的半径为r,则Rt△MBN的周长为( )
A. r B.
r C. 2r D.
r
相关试题