【题目】如图,一次函数y=﹣x+2的图象与反比例函数y=﹣
的图象交于A、B两点,与x轴交于D点,且C、D两点关于y轴对称.
(1)求A、B两点的坐标;
(2)求△ABC的面积.
![]()
参考答案:
【答案】(1)A点坐标为(﹣1,3),B点坐标为(3,﹣1);
(2)S△ABC=8.
【解析】试题分析:(1)根据反比例函数与一次函数的交点问题得到方程组,然后解方程组即可得到A、B两点的坐标;
(2)先利用x轴上点的坐标特征确定D点坐标,再利用关于y轴对称的点的坐标特征得到C点坐标,然后利用S△ABC=S△ACD+S△BCD进行计算.
试题解析:(1)根据题意得
,解方程组得
或
,
所以A点坐标为(﹣1,3),B点坐标为(3,﹣1);
(2)把y=0代入y=﹣x+2得﹣x+2=0,解得x=2,
所以D点坐标为(2,0),
因为C、D两点关于y轴对称,
所以C点坐标为(﹣2,0),
所以S△ABC=S△ACD+S△BCD=
×(2+2)×3+
×(2+2)×1=8.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,已知∠BAC=∠EAD=90o.
(1)判断∠BAE与∠CAD的大小关系,并说明理由.
(2)当∠EAC=60o时,求∠BAD的大小.
(3)探究∠EAC与∠BAD的数量关系,请直接写出结果,不要求说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,大楼AB右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B,C,E在同一水平直线上),已知AB=80 m,DE=10 m,求障碍物B,C两点间的距离.(结果精确到0.1 m)(参考数据:
≈1.414,、
≈1.732)
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,O为坐标原点,矩形OABC中,A(10,0),C(0,4),D为OA的中点,P为BC边上一点.若△POD为等腰三角形,则所有满足条件的点P的坐标为 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】观察下面三行数:
-1,4,-9, 16,-25,…; ①
0,6,-6, 20,-20,…; ②
-2,3,-10,15,-26,…; ③
(1)分析第一行数的排列规律,请用代数式表示第n个数.
(2)分析第②③行数分别与第①行数的关系.请用代数式表示每行的第n个数.
(3)取每行的第n个数,计算这三个数的和,并求当n=100时的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某校八年级两个班,各选派10名学生参加学校举行的“美丽绍兴乡土风情知识”大赛预赛各参赛选手的成绩如下:
八(1)班:88,91,92,93,93,93,94,98,98,100;
八(2)班:89,93,93,93,95,96,96,98,98,99.
通过整理,得到数据分析表如下:
班级
最高分
平均分
中位数
众数
方差
八(1)班
100
m
93
93
12
八(2)班
99
95
n
93
8.4
(1)求表中m、n的值;
(2)依据数据分析表,有同学说:“最高分在(1)班,(1)班的成绩比(2)班好”,但也有同学说(2)班的成绩更好请您写出两条支持八(2)班成绩好的理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,四边形ABCD是矩形,点E在CD边上,点F在DC延长线上,AE=BF.
(1)求证:四边形ABFE是平行四边形;
(2)若∠BEF=∠DAE,AE=3,BE=4,求EF的长.

相关试题