【题目】如图,已知矩形ABCD中,AB=3,AD=2,分别以边AD,BC为直径在矩形ABCD的内部作半圆O1和半圆O2,一平行于AB的直线EF与这两个半圆分别交于点E、点F,且EF=2(EF与AB在圆心O1和O2的同侧),则由,EF,,AB所围成图形(图中阴影部分)的面积等于


参考答案:

【答案】

【解析】

试题解析:连接O1O2,O1E,O2F,则四边形O1O2FE是等腰梯形,过E作EGO1O2,过FO1O2

四边形EGHF是矩形,

GH=EF=2,

O1G=

O1E=1,

GE=

∴∠O1EG=30°,

∴∠AO1E=30°,

同理BO2F=30°,

阴影部分的面积=S矩形ABO2O1﹣2S扇形AO1E﹣S梯形EFO2O1=3×1﹣2×=(2+3)×=3﹣

关闭