【题目】如图,已知两条射线OM∥CN,动线段AB的两个端点A、B分别在射线OM、CN上,且∠C =∠OAB =108°,F点在线段CB上,OB平分∠AOF,OE平分∠COF.
(1)请在图中找出与∠AOC相等的角,并说明理由;
(2)若平移AB,那么∠OBC与∠OFC的度数比是否随着AB位置变化而变化?若变化,找出变化规律;若不变,求出这个比值.
![]()
参考答案:
【答案】(1)与∠AOC相等的角是∠AOC,∠ABC,∠BAM(2)1:2
【解析】
(1)根据两直线平行,同旁内角互补可得求出∠AOC,∠ABC,再根据邻补角的定义求出∠BAM即可得解;
(2)根据两直线平行,内错角相等可得∠OBC=∠AOB,∠OFC=∠AOF,再根据角平分线的定义可得∠AOF=2∠AOB,从而得到比值不变
(1)∵OM∥CN,
∴∠AOC=180°-∠C=180°-108°=72°,
∠ABC=180°-∠OAB=180°-108°=72°,
又∵∠BAM=∠180°-∠OAB=180°-108°=72°,
∴与∠AOC相等的角是∠AOC,∠ABC,∠BAM;
(2)∵OM∥CN,
∴∠OBC=∠AOB,∠OFC=∠AOF,
∵OB平分∠AOF,
∴∠AOF=2∠AOB,
∴∠OFC=2∠OBC,
∴∠OBC:∠OFC=1:2;
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知∠1=∠BDC,∠2+∠3=180°.
(1) 请你判断DA与CE的位置关系,并说明理由;
(2) 若DA平分∠BDC,CE⊥AE于点E,∠1=70°,试求∠FAB的度数.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,△ABO的面积为8,OA=OB,BC=12,点P的坐标是(a,6).
(1) △ABC三个顶点的坐标分别为A( , ),B( , ),C( , );
(2) 是否存在点P,使得
?若存在,求出满足条件的所有点P的坐标. 
-
科目: 来源: 题型:
查看答案和解析>>【题目】(操作发现)如图1,
为等腰直角三角形,
,先将三角板的
角与
重合,再将三角板绕点
按顺时针方向旋转(旋转角大于
且小于
),旋转后三角板的一直角边与
交于点
.在三角板另一直角边上取一点
,使
,线段
上取点
,使
,连接
,
.
(1)请求出
的度数?(2)
与
相等吗?请说明理由;(类比探究)如图2,
为等边三角形,先将三角板中的
角与
重合,再将三角板绕点
按顺时针方向旋转(旋转角大于
且小于
).旋转后三角板的一直角边与
交于点
.在三角板斜边上取一点
,使
,线段
上取点
,使
,连接
,
.(3)直接写出
_________度;(4)若
,
,求线段
的长度. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,四边形ABCD是菱形,对角线AC,BD相交于点O,DH⊥AB于点H,连接OH,∠CAD=20°,则∠DHO的度数是( )

A.20°B.25°C.30°D.40°
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在长方形ABCD中,点A(1,8),B(1,6),C(7,6).
(1)请直接写出点D的坐标;
(2)连接线段OB,OD,BD,请求出△OBD的面积;
(3)若长方形ABCD以每秒1个单位长度的速度向下运动,设运动的时间为t秒,是否存在某一时刻,使△OBD的面积与长方形ABCD的面积相等?若存在,请求出t的值;若不存在,请说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】藏族小伙小游到批发市场购买牛肉,已知牦牛肉和黄牛肉的单价之和为每千克44元,小游准备购买牦牛肉和黄牛肉总共不超过120千克,其中黄牛肉至少购买30千克,牦牛肉的数量不少于黄牛肉的2倍,粗心的小游在做预算时将牦牛肉和黄牛肉的价格弄对换了,结果实际购买两种牛肉的总价比预算多了224元,若牦牛肉、黄牛肉的单价和数量均为整数,则小游实际购买这两种牛肉最多需要花费______元

相关试题