【题目】二次函数y=ax2+bx+c(a≠0)和正比例函数y=
x的图象如图所示,则方程ax2+(b﹣
)x+c=0(a≠0)的两根之和( ) ![]()
A.大于0
B.等于0
C.小于0
D.不能确定
参考答案:
【答案】A
【解析】解:设ax2+bx+c=0(a≠0)的两根为x1 , x2 , ∵由二次函数的图象可知x1+x2>0,a>0,
∴﹣
>0.
设方程ax2+(b﹣
)x+c=0(a≠0)的两根为m,n,则m+n=﹣
=﹣
+
,
∵a>0,
∴
>0,
∴m+n>0.
故选A.
设ax2+bx+c=0(a≠0)的两根为x1 , x2 , 由二次函数的图象可知x1+x2>0,a>0,设方程ax2+(b﹣
)x+c=0(a≠0)的两根为m,n再根据根与系数的关系即可得出结论.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在大楼AB的正前方有一斜坡CD,已知斜坡CD长6
米,坡角∠DCE等于45°,小红在斜坡下的点C处测得楼顶B的仰角为60°,在斜坡上的顶点D处测得楼顶B的仰角为45°,其中点A、C、E在同一直线上.
(1)求斜坡CD的高度DE;
(2)求大楼AB的高度(结果保留根号). -
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,以矩形ABCD的对角线AC的中点O为圆心,OA长为半径作⊙O,过点B作BK⊥AC,垂足为K,过D作DH∥KB,DH分别与AC,AB,⊙O及CB的延长线相交于点E,F,G,H,且F是EG的中点.

(1)求证:点D在⊙O上;
(2)求证:F是AB的中点;
(3)若DE=4,求⊙O的半径和△BFH的面积. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线y=ax2+bx﹣2经过点A(1,0)和点B(4,0),与y轴交于点C.
附:阅读材料
法国弗朗索瓦韦达最早发现一元二次方程中根与系数的关系为:两根之和等于一次项系数与二次项系数之比的相反数,两根之积等于常数项羽二次项系数之比,人们称之为韦达定理.
即:设一元二次方程ax2+bx+c=0的两根为x1、x2 , 则:x1+x2=﹣
,x1x2=
能灵活运用韦达定理,有时可以使解题更为简单.
(1)求抛物线的解析式;
(2)以点A为圆心,作于直线BC相切的⊙A,求⊙A的面积;
(3)将直线BC向下平移n个单位后与抛物线交于点M、N,且线段MN=2CB,求直线MN的解析式及平移距离. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在矩形ABCD中,E是AD边的中点,BE⊥AC,垂足为点F,连接DF,分析下列四个结论:①△AEF∽△CAB;②CF=2AF;③DF=DC;④tan∠CAD=
;正确的是( ) 
A.4个
B.3个
C.2个
D.1个 -
科目: 来源: 题型:
查看答案和解析>>【题目】抛物线y=﹣
x+2与y轴交于点A,顶点为B.点P是x轴上的一个动点,当点P的坐标是时,|PA﹣PB|取得最小值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图放置的△OAB1 , △B1A1B2 , △B2A2B3 , …都是边长为2的等边三角形,边AO在y轴上,点B1 , B2 , B3 , …都在直线y=
x上,则A2014的坐标是 . 
相关试题