【题目】如图,在大楼AB的正前方有一斜坡CD,已知斜坡CD长6
米,坡角∠DCE等于45°,小红在斜坡下的点C处测得楼顶B的仰角为60°,在斜坡上的顶点D处测得楼顶B的仰角为45°,其中点A、C、E在同一直线上.![]()
(1)求斜坡CD的高度DE;
(2)求大楼AB的高度(结果保留根号).
参考答案:
【答案】
(1)
解:在Rt△DCE中,DC=6
米,∠DCE=30°,∠DEC=90°,
∴DE=EC=6米;
(2)
解:过D作DF⊥AB,交AB于点F,
∵∠BFD=90°,∠BDF=45°,
∴∠BFD=45°,即△BFD为等腰直角三角形,则DF=BF,
设AB=x米,则BF=(x﹣6)米.
∵四边形DEAF为矩形,
∴AF=DE=6米,即AB=BF=(x﹣6)米,AC=(x﹣12)米,
在Rt△ABC中,∠ABC=30°,
tan30°=
,即
=
,
解得:x=18+6
,
即大楼的高度是18+6
米.
![]()
【解析】(1)在直角三角形DCE中,利用锐角三角函数定义求出DE的长即可;(2)过D作DF垂直于AB,交AB于点F,可得出三角形BDF为等腰直角三角形,设AB=x米,则BF=(x﹣6)米,AC=(x﹣12)米,在Rt△ABC中,利用三角函数即可列方、方程求得x的值.
【考点精析】解答此题的关键在于理解关于仰角俯角问题的相关知识,掌握仰角:视线在水平线上方的角;俯角:视线在水平线下方的角.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,矩形AOCB的两边OA、OC分别在x轴和y轴上,且OA=1,OC=
,在第二象限内,以原点O为位似中心将矩形AOCB放大为原来的
倍,得到矩形A1OC1B1 , 再以原点O为位似中心将矩形A1OC1B1放大为原来的
倍,得到矩形A2OC2B2…,以此类推,得到的矩形A100OC100B100的对角线交点的纵坐标为 . 
-
科目: 来源: 题型:
查看答案和解析>>【题目】计算:(π﹣5)0+cos45°﹣|﹣
|+
. -
科目: 来源: 题型:
查看答案和解析>>【题目】某学校为了解学生对新闻、体育、动画、娱乐、戏曲五类电视节目最喜爱的情况,随机调查了若干名学生,根据调查数据进行整理,绘制了如下的不完整统计图.

请你根据以上的信息,回答下列问题:
(1)本次共调查了名学生,其中最喜爱体育的有人;
(2)在扇形统计图中,最喜爱体育的对应扇形的圆心角大小是 .
(3)小李和小张在新闻、体育、动画三类电视节目中分别有一类是自己最喜爱的节目,请用树状图或列表法求两人恰好最喜爱同一类节目的概率. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,以矩形ABCD的对角线AC的中点O为圆心,OA长为半径作⊙O,过点B作BK⊥AC,垂足为K,过D作DH∥KB,DH分别与AC,AB,⊙O及CB的延长线相交于点E,F,G,H,且F是EG的中点.

(1)求证:点D在⊙O上;
(2)求证:F是AB的中点;
(3)若DE=4,求⊙O的半径和△BFH的面积. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线y=ax2+bx﹣2经过点A(1,0)和点B(4,0),与y轴交于点C.
附:阅读材料
法国弗朗索瓦韦达最早发现一元二次方程中根与系数的关系为:两根之和等于一次项系数与二次项系数之比的相反数,两根之积等于常数项羽二次项系数之比,人们称之为韦达定理.
即:设一元二次方程ax2+bx+c=0的两根为x1、x2 , 则:x1+x2=﹣
,x1x2=
能灵活运用韦达定理,有时可以使解题更为简单.
(1)求抛物线的解析式;
(2)以点A为圆心,作于直线BC相切的⊙A,求⊙A的面积;
(3)将直线BC向下平移n个单位后与抛物线交于点M、N,且线段MN=2CB,求直线MN的解析式及平移距离. -
科目: 来源: 题型:
查看答案和解析>>【题目】二次函数y=ax2+bx+c(a≠0)和正比例函数y=
x的图象如图所示,则方程ax2+(b﹣
)x+c=0(a≠0)的两根之和( ) 
A.大于0
B.等于0
C.小于0
D.不能确定
相关试题