【题目】如图,在△ABC中,AD,AF分别为△ABC的中线和高,BE为△ABD的角平分线.
![]()
(1)若∠BED=40°,∠BAD=25°,求∠BAF的大小;
(2)若△ABC的面积为40,BD=5,求AF的长.
参考答案:
【答案】(1)60°;(2)8
【解析】
(1)先利用三角形的外角性质计算出∠ABE=15°,再利用角平分线定义得到∠ABC=2∠ABE=30°,然后根据高的定义和互余可求出∠BAF的度数;
(2)先根据中线定义得到BC=2BD=10,然后利用三角形面积公式求AF的长.
(1)∵∠BED=∠ABE+∠BAE,
∴∠ABE=40°-25°=15°,
∵BE平分∠ABC,
∴∠ABC=2∠ABE=30°,
∵AF为高,
∴∠AFB=90°,
∴∠BAF=90°-∠ABF=90°-30°=60°;
(2)∵AD为中线,
∴BD=CD=5,
∵S△ABC=
AFBC=40,
∴AF=
=8.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某一天,水果经营户老张用1600元从水果批发市场批发猕猴桃和芒果共50千克,后再到水果市场去卖,已知猕猴桃和芒果当天的批发价和零售价如表所示:
品名
猕猴桃
芒果
批发价
元
千克
20
40
零售价
元
千克
26
50
他购进的猕猴桃和芒果各多少千克?
如果猕猴桃和芒果全部卖完,他能赚多少钱? -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC的周长为64,E、F、G分别为AB、AC、BC的中点,A′、B′、C′ 分别为EF、EG、GF的中点,如果△ABC、△EFG、△A′B′C′分别为第1个、第2个、第3个三角形,按照上述方法继续作三角形,那么第n个三角形的周长是__________________.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,以△ABC的三边为边在BC的同侧分别作三个等边三角形△ABD,△BCE,△ACF,请解答下列问题:
(1)求证:四边形AFED是平行四边形;
(2)当△ABC满足 时,四边形AFED是矩形.
当△ABC满足 时,四边形AFED是菱形.
当△ABC满足 时,四边形AFED是正方形.

-
科目: 来源: 题型:
查看答案和解析>>【题目】暑假期间,小刚一家乘车去离家380公里的某景区旅游,他们离家的距离y(km)与汽车行驶时间x(h)之间的三段函数图象如图.

(1)三段图像中,小刚行驶的速度最慢的是多少?
(2)求线段AB对应的函数表达式;
(3)小刚一家出发2.5小时时离目的地多远?
-
科目: 来源: 题型:
查看答案和解析>>【题目】某商场计划用3 800元购进节能灯120只,这两种节能灯的进价、售价如下表:
进价(元/只)
售价(元/只)
甲型
25
30
乙型
45
60
(1)求甲、乙两种节能灯各进多少只?
(2)全部售完120只节能灯后,该商场获利润多少元?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,为了绿化小区,某物业公司要在形如五边形ABCDE的草坪上建一个矩形花坛PKDH.
已知:PH∥AE,PK∥BC,DE=100米,EA=60米,BC=70米,CD=80米.以BC所在直线为x轴,AE所在直线为y轴,建立平面直角坐标系,坐标原点为O.
(1)求直线AB的解析式.
(2)若设点P的横坐标为x,矩形PKDH的面积为S,求S关于x的函数关系式.
相关试题