【题目】如图(1)是某河上一座古拱桥的截面图,拱桥桥洞上沿是抛物线形状.抛物线两端点与水面的距离都是1m,拱桥的跨度为10cm.桥洞与水面的最大距离是5m.桥洞两侧壁上各有一盏距离水面4m的景观灯.现把拱桥的截面图放在平面直角坐标系中,如图(2).求: ![]()
(1)抛物线的解析式;
(2)两盏景观灯P1、P2之间的水平距离.
参考答案:
【答案】
(1)解:抛物线的顶点坐标为(5,5),与y轴交点坐标是(0,1),
设抛物线的解析式是y=a(x﹣5)2+5,
把(0,1)代入y=a(x﹣5)2+5,
得a=﹣
,
∴y=﹣
(x﹣5)2+5(0≤x≤10)
(2)解:由已知得两景观灯的纵坐标都是4,
∴4=﹣
(x﹣5)2+5,
∴
(x﹣5)2=1,
∴x1=
,x2=
,
∴两景观灯间的距离为
﹣
=5米
【解析】(1)由图形可知这是一条抛物线,根据图形也可以知道抛物线的顶点坐标为(5,5),与y轴交点坐标是(0,1),设出抛物线的解析式将两点代入可得抛物线方程;(2)第二题中要求灯的距离,只需要把纵坐标为4代入,求出x,然后两者相减,就是它们的距离.
-
科目: 来源: 题型:
查看答案和解析>>【题目】对非负实数x“四舍五入”到个位的值记为[x].即当n为非负整数时,若n﹣
≤x<n+
,则[x]=n.如:[3.4]=3,[3.5]=4,…根据以上材料,解决下列问题: (1)填空:
①若[x]=3,则x应满足的条件:________;
②若[3x+1]=3,则x应满足的条件:________;
(2)求满足[x]=
x﹣1的所有非负实数x的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】对非负实数x“四舍五入”到个位的值记为<x>,即:当n为非负整数时,如果n﹣
≤x<n+
,则<x>=n. 如:<0>=<0.48>=0,<0.64>=<1.493>=1,<2>=2,<3.5>=<4.12>=4,…试解决下列问题:
(1)填空:①<π>=________;②如果<2x﹣1>=3,则实数x的取值范围为________;
(2)①当x≥0,m为非负整数时,求证:<x+m>=m+<x>;②举例说明<x+y>=<x>+<y>不恒成立;
(3)求满足<x>=
x的所有非负实数x的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】解一元二次不等式
.请按照下面的步骤,完成本题的解答.
解:
可化为
. (1)依据“两数相乘,同号得正”,可得不等式组①
或不等式组②________. (2)解不等式组①,得________.
(3)解不等式组②,得________.
(4)一元二次不等式
的解集为________. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直角坐标系中,△ABC的顶点都在网格点上,其中,C点坐标为(1,2)
(1)写出点A、B的坐标:A( , )、B( , )
(2)将△ABC先向左平移1个单位长度,再向上平移2个单位长度,得到△A′B′C′,画出△A′B′C′
(3)写出三个顶点坐标A′( 、 )、B′( 、 )、C′ ( 、 )
(4)求△ABC的面积.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,AB为⊙O的直径,PA,PC是⊙O的切线,A,C为切点,∠BAC=30°.

(1)求∠P的大小;
(2)若AB=6,求PA的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】关于二次函数y=﹣2x2+1,下列说法错误的是( )
A.图象开口向下
B.图象的对称轴为x=
C.函数最大值为1
D.当x>1时,y随x的增大而减小
相关试题