【题目】如图,已知△ABC的∠ABC和∠ACB的平分线BE,CF交于点G,若∠BGC=115°,则∠A= .
![]()
【答案】50°
【解析】
试题分析:根据三角形内角和定理求出∠GBC+∠GCB,根据角平分线的定义求出∠ABC+∠ACB,根据三角形内角和定理计算即可.
解:∵∠BGC=115°,
∴∠GBC+∠GCB=180°﹣115°=65°,
∵BE,CF是△ABC的∠ABC和∠ACB的平分线,
∴∠GBC=
ABC,∠GCB=
ACB,
∴∠ABC+∠ACB=130°,
∴∠A=180°﹣130°=50°,
故答案为:50°.
【题型】填空题
【结束】
14
【题目】如图所示,有(1)~(4)4个条形方格图,图中由实线围成的图形与前图全等的有
________(只要填序号即可).
![]()
参考答案:
【答案】(1)、(3)、(4)
【解析】观察图形,可得(1)(3)(4)各图形的角度与原图形相等,边长与原图形相等,由此可得与前图全等的有(1)、(3)、(4).
-
科目: 来源: 题型:
查看答案和解析>>【题目】小明不小心把一块三角形形状的玻璃打碎成了三块,如图①②③,他想要到玻璃店去配一块大小形状完全一样的玻璃,你认为应带( )

A. ① B. ② C. ③ D. ①和②
【答案】C
【解析】试题分析:根据全等三角形的判定方法带③去可以利用“角边角”得到全等的三角形.
故选C.
考点:全等三角形的应用.
【题型】单选题
【结束】
12【题目】如图,要测量池塘的宽度AB,在池塘外选取一点P,连接AP、BP并各自延长,使PC=PA,PD=PB,连接CD,测得CD长为25m,则池塘宽AB为________m,依据是________

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知一次函数y=kx+b,当x=2时y的值是﹣1,当x=﹣1时y的值是5.
(1)求此一次函数的解析式;
(2)若点P(m,n)是此函数图象上的一点,﹣3≤m≤2,求n的最大值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,四边形ABCD内接于⊙O,AC平分∠BAD,延长DC交AB的延长线于点E .

(1)若∠ADC=86°,求∠CBE的度数;
(2)若AC=EC,求证:AD=BE.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在△ABC中,∠B=40°,AD是BC边上的高,且∠DAC=20°,则∠BAC=________.

【答案】70°
【解析】∵∠B=40°,AD⊥BC,
∴∠BAD=90°-40°=50°.
∵∠DAC=20°,
∴∠BAC=∠BAD+∠DAC=50°+20°=70°.
【题型】填空题
【结束】
16【题目】如图所示,E,D是AB,AC上的两点,BD,CE交于点O,且AB=AC,使△ACE≌△ABD,你补充的条件是________

-
科目: 来源: 题型:
查看答案和解析>>【题目】若关于x的一元二次方程(x﹣2)(x﹣3)=m有实数根x1、x2,且x1<x2,则下列结论中错误的是( ).
A. 当m=0时,x1=2,x2=3
B. m>﹣

C. 当m>0时,2<x1<x2<3
D. 二次函数y=(x﹣x1)(x﹣x2)+m的图象与x轴交点的坐标为(2,0)和(3,0)
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在菱形ABCD中,AB=4cm,∠ADC=120°,点E、F同时由A、C两点出发,分别沿AB、CB方向向点B匀速移动(到点B为止),点E的速度为1cm/s,点F的速度为2cm/s,经过t秒△DEF为等边三角形,则t的值为 .

相关试题