【题目】图1中的长方形长为宽的3倍,将四个这样的长方形拼成图2中的大正方形.
(1)若中间小正方形的面积是
,问图1中的长方形的面积是多少
?
(2)若大正方形的面积就比小正方形的面积大
,求中间小正方形的面积.
![]()
参考答案:
【答案】(1)
;(2)8.
【解析】
(1)设图1中的长方形的宽为a,则它的长为3a,得到图2中小正方形的边长为2a,由小正方形的面积为5,得到
的值,从而得出结论.
(2)中间小正方形的边长为2a,大正方形的边长为4a,根据大正方形的面积就比小正方形的面积大
,列方程得到
的值,根据正方形的面积公式即可得出结论.
(1)设图1中的长方形的宽为a,则它的长为3a,∴图2中小正方形的边长为2a,∴
,∴
,∴图1中的长方形的面积=a3a=
.
(2)中间小正方形的边长为2a,大正方形的边长为4a,∴
,解得:
,∴中间小正方形的面积=
=8.
-
科目: 来源: 题型:
查看答案和解析>>【题目】甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500m,先到终点
的人原地休息.已知甲先出发2s.在跑步过程中,甲、乙两人的距离y(m)与乙出发的时间t(s)之间的关系
如图所示,给出以下结论:①a=8;②b=92;③c=123.其中正确的是【 】

A.①②③ B.仅有①② C.仅有①③ D.仅有②③
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,每个小正方形的边长为1,在方格纸内将△ABC经过一次平移后得到△A′B′C′,图中标出了点B的对应点B′,利用网格点画图和无刻度的直尺画图并解答(保留画图痕迹):
(1)画出△A′B′C′;
(2)画出△ABC的高,即线段BD;
(3)连接AA′、 CC′,那么AA′与CC′的关系是________;线段AC扫过图形的面积为____.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,将一个正方形纸片OABC放置在平面直角坐标系中,其中A(1,0),C(0,1),P为AB边上一个动点,折叠该纸片,使O点与P点重合,折痕l与OP交于点M,与 对角线AC交于Q点

(Ⅰ)若点P的坐标为(1,
),求点M的坐标;
(Ⅱ)若点P的坐标为(1,t)
①求点M的坐标(用含t的式子表示)(直接写出答案)
②求点Q的坐标(用含t的式子表示)(直接写出答案)
(Ⅲ)当点P在边AB上移动时,∠QOP的度数是否发生变化?如果你认为不发生变化,写出它的角度的大小.并说明理由;如果你认为发生变化,也说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图1为深50cm的圆柱形容器,底部放入一个长方体的铁块,现在以一定的速度向容器内注水,图2为容器顶部离水面的距离y(cm)随时间t(分钟)的变化图象,则( )

A. 注水的速度为每分钟注入
cm高水位的水B. 放人的长方体的高度为30cm
C. 该容器注满水所用的时间为21分钟
D. 此长方体的体积为此容器的体积的0.35.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知抛物线l1:y=﹣x2+2x+3与x轴交于点A、B(点A在点B左边),与y轴交于点C,抛物线l2经过点A,与x轴的另一个交点为E(4,0),与y轴交于点D(0,﹣2).

(1)求抛物线l2的解析式;
(2)点P为线段AB上一动点(不与A、B重合),过点P作y轴的平行线交抛物线l1于点M,交抛物线l2于点N.
①当四边形AMBN的面积最大时,求点P的坐标;
②当CM=DN≠0时,求点P的坐标. -
科目: 来源: 题型:
查看答案和解析>>【题目】现代互联网技术的广泛应用,催生了快递行业的高速发展.小明计划给朋友快递一部分物品,经了解有甲、乙两家快递公司比较合适.甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费.乙公司表示:按每千克16元收费,另加包装费3元.设小明快递物品x千克.
(1)请分别写出甲、乙两家快递公司快递该物品的费用y(元)与x(千克)之间的函数关系式;
(2)小明选择哪家快递公司更省钱?
相关试题