【题目】已知多项式
的常数项是a,次数是b,且a,b两个数轴上所对应的点分别为A、B,若点A、点B同时沿数轴向正方向运动,点A的速度是点B的2倍,且3秒后,
,求点B的速度为( )
A.
B.
或
C.
或
D.![]()
参考答案:
【答案】C
【解析】
根据多项式中常数项及多项式的次数的定义求出a和b,设点B的速度为v,则A的速度为2v,分A在原点O的左边与A在原点O的右边进行讨论即可.
解:∵多项式x3-3xy2-4的常数项是a,次数是b,
∴a=-4,b=3,
设B速度为v,则A的速度为2v,3秒后点A在数轴上表示的数为(-4+6v),B点在数轴上表示的数为3+3v,且OB=3+3v
当A还在原点O的左边时,OA=0-(-4+6v)=4-6v,由
可得
,解得
;
当A还在原点O的右边时,OA=(-4+6v)-0=6v-4,由
可得
,解得
.
故B的速度为
或
,选C.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在Rt△ABC中,∠C=90°,以AC为直径作⊙O,交AB于D,过点O作OE∥AB,交BC于E.
(1)求证:ED为⊙O的切线;
(2)如果⊙O的半径为
,ED=2,延长EO交⊙O于F,连接DF、AF,求△ADF的面积.
【答案】(1)证明见解析;(2)
【解析】试题分析:(1)首先连接OD,由OE∥AB,根据平行线与等腰三角形的性质,易证得
≌
即可得
,则可证得
为
的切线;
(2)连接CD,根据直径所对的圆周角是直角,即可得
利用勾股定理即可求得
的长,又由OE∥AB,证得
根据相似三角形的对应边成比例,即可求得
的长,然后利用三角函数的知识,求得
与
的长,然后利用S△ADF=S梯形ABEF-S梯形DBEF求得答案.试题解析:(1)证明:连接OD,

∵OE∥AB,
∴∠COE=∠CAD,∠EOD=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠COE=∠DOE,
在△COE和△DOE中,
∴△COE≌△DOE(SAS),
∴ED⊥OD,
∴ED是
的切线;(2)连接CD,交OE于M,
在Rt△ODE中,
∵OD=32,DE=2,
∵OE∥AB,
∴△COE∽△CAB,
∴AB=5,∵AC是直径,
∵EF∥AB,
∴S△ADF=S梯形ABEFS梯形DBEF
∴△ADF的面积为


【题型】解答题
【结束】
25【题目】【题目】已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.
(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);
(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;
(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.

-
科目: 来源: 题型:
查看答案和解析>>【题目】暑假期间,七(2)班的张明、王强等同学随家长一同到某公园游玩,下面是购买门票时,张明与他爸爸的对话(如图),试根据图中的信息,解答下列问题:
⑴ 张明他们一共去了几个成人,几个学生?
⑵ 请你帮助张明算一算,用哪种方式购票(团体购票还是非团体购票)更省钱?
说明理由.
⑶ 正要购票时,张明发现七(3)班的张小毛等15名同学和他们的2名家长共17人也来购票,请你为他们设计出最省的购票方案,并求出此时的购票费用.

-
科目: 来源: 题型:
查看答案和解析>>【题目】有理数数a,b在轴上的表示如图所示,则下列结论中:①ab<0,②a+b<0,③a﹣b<0,④a<
,⑤﹣a>﹣b,正确的有( )
A.2个B.3个C.4个D.5个
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在四边形ABCD中,对角线AC平分∠DAB,∠ABD=52°,∠ABC=116°,∠ACB=α°,则∠BDC的度数为( )

A. α B.
C. 90﹣α D. 90﹣
-
科目: 来源: 题型:
查看答案和解析>>【题目】计算题
(1)(+19)+(﹣27)﹣(+10)﹣23+(﹣49)
(2)(
)×(﹣30)(3)
(4)

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,OM是∠AOC的平分线.ON是∠BOC的平分线.

(1)如图1,当∠AOB=90°,∠BOC=60°时,∠MON的度数是多少?为什么?
(2)如图2,当∠AOB=70°,∠BOC=60°时,∠MON= (直接写出结果)
(3)如图3,当∠AOB=α,∠BOC=β时,猜想:∠MON﹣∠CON= (直接写出结果)
相关试题