【题目】已知:如图,△ABC中,AB=AC,D、E分别在AC、AB上,且BD=BC,AD=DE=EB, 则∠A的度数等于( )
![]()
A. 36°B. 40°C. 45°D. 50°
参考答案:
【答案】C
【解析】
根据同一个三角形中等边对等角的性质,设∠ABD=x,结合三角形外角的性质,则可用x的代数式表示∠A、∠ABC、∠C,再在△ABC中,运用三角形的内角和为180°,可求∠A的度数.
∵DE=EB,
∴设∠BDE=∠ABD=x,
∴∠AED=∠BDE+∠ABD=2x,
∵AD=DE,
∴∠A=∠AED=2x,
∴∠BDC=∠A+∠ABD=3x,
∵BD=BC,
∴∠C=∠BDC=3x,
∵AB=AC,
∴∠ABC=∠C=3x,
在△ABC中,3x+3x+2x=180°,
解得x=22.5°,
∴∠A=2x=22.5°×2=45°,
故选C.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某车间有技术工人85人,平均每天每人可加工甲种部件16个或乙种部件10个,2个甲种部件和3个乙种部件配成一套,问加工甲、乙两种部件各安排多少人才能使每天加工的两种部件刚好配套?并求出加工了多少套?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在
ABCD中,F是AD的中点,延长BC到点E,使CE=
BC,连结DE,CF。
(1)求证:四边形CEDF是平行四边形;
(2)若AB=4,AD=6,∠B=60°,求DE的长。
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC中,∠ACB=90°,CD⊥AB于点D,AO平分∠BAC,交CD于点O,E为AB上一点,且AE=AC。
(1)求证:△AOC≌△AOE;
(2)求证:OE∥BC。

-
科目: 来源: 题型:
查看答案和解析>>【题目】列方程(或方程组)解应用题2019年是决胜全面建成小康社会、打好污染防治攻坚战的关键之年.为了解决垃圾回收最后一公里的难题,“小黄狗”智能垃圾分类回收环保公益项目通过大数据、人工智能和物联网等先进科技进驻小区、写字楼、学校、机关和社区等进行回收.某位小区居民装修房屋,在过去的一个月内投放纸类垃圾和塑料垃圾共82公斤,其中纸类垃圾的投放是塑料垃圾的8倍多10公斤,请问这位小区居民在过去的一个月内投放纸类垃圾和塑料垃圾分别是多少公斤?

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,AB=AC,∠A=36°,BE平分∠ABC,CD平分∠ACB,CD交BE 于点F,那么图中的等腰三角形共有( )个.

A. 6B. 7C. 8D. 9
-
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系中,O为原点,点A(0,4),点B(﹣2,0),把△ABO绕点A逆时针旋转,得△AB′O′,点B、O旋转后的对应点为B′、O′.
(1)如图①,若旋转角为60°时,求BB′的长;
(2)如图②,若AB′∥x轴,求点O′的坐标;
(3)如图③,若旋转角为240°时,边OB上的一点P旋转后的对应点为P′,当O′P+AP′取得最小值时,求点P′的坐标(直接写出结果即可)

相关试题