【题目】(1)叙述并证明三角形内角和定理(证明用图 1);
(2)如图 2 是七角星形,求∠A+∠B+∠C+∠D+∠E+∠F+∠G 的度数.
![]()
参考答案:
【答案】(1)见解析;(2) 180°
【解析】
(1)先写出已知、求证,再画图,然后证明.过点A作MN∥BC,利用MN∥BC,可得∠B=∠MAB,∠C=∠NAC,而∠MAB+∠NAC+∠BAC=180°,利用等量代换可证∠BAC+∠B+∠C=180°;
(2)先根据△外角的性质得出∠D+∠G=∠CMD,∠A+∠E=∠DMN,∠B+∠F=∠MNC,再由三角形内角和定理即可得出结论.
![]()
(1)证明:如图,过点 A 作直线 MN,使 MN∥BC,,
∵MN∥BC,
∴∠B=∠MAB,∠C=∠NAC(两直线平行,内错角相等)
∵∠MAB+∠NAC+∠BAC=180°(平角定义)
∴∠B+∠C+∠BAC=180°(等量代换)
∴∠BAC+∠B+∠C=180°.
![]()
(2)解:如图 2,
∵∠A+∠E=∠DME,∠G+∠D=∠ANG,∠C+∠F=∠BHC,
∵∠DME+∠ANG=∠BPH,
∴∠A+∠E+∠G+∠D=∠BPH,
∵∠B+∠BHC+∠BPH=180°,
∴∠A+∠B+∠C+∠D+∠E+∠F+∠G=180°.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图图案是用长度相同的火柴棒按一定规律拼搭而成,图案①需8根火柴棒,图案②需15根火柴棒,…,

(1)按此规律,图案⑦需____根火柴棒;第n个图案需____根火柴棒.
(2)用2018根火柴棒能按规律拼搭而成一个图案?若能,说明是第几个图案:若不可能,请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,从A地到B地的公路需经过C地,图中AC=10千米,∠CAB=25°,∠CBA=37°,因城市规划的需要,将在A、B两地之间修建一条笔直的公路.

(1)求改直的公路AB的长;
(2)问公路改直后比原来缩短了多少千米?(sin25°≈0.42,cos25°≈0.91,sin37°≈0.60,tan37°≈0.75) -
科目: 来源: 题型:
查看答案和解析>>【题目】已知直线 l1 经过点 A(5,0)和点 B(
,﹣5)(1)求直线 l1 的表达式;
(2)设直线 l2 的解析式为 y=﹣2x+2,且 l2 与 x 轴交于点 D,直线 l1 交 l2 于点 C, 求△CAD 的面积.
-
科目: 来源: 题型:
查看答案和解析>>【题目】大润发超市在销售某种进货价为20元/件的商品时,以30元/件售出,每天能售出100件.调查表明:这种商品的售价每上涨1元/件,其销售量就将减少2件.
(1)为了实现每天1600元的销售利润,超市应将这种商品的售价定为多少?
(2)设每件商品的售价为x元,超市所获利润为y元. ①求y与x之间的函数关系式;
②物价局规定该商品的售价不能超过40元/件,超市为了获得最大的利润,应将该商品售价定为多少?最大利润是多少? -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC为等边三角形,D为边BA延长线上一点,连接CD,以CD为一边作等边三角形CDE,连接AE.

(1)求证:△CBD≌△CAE.
(2)判断AE与BC的位置关系,并说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】探究归纳题:

(1)试验
如图1,直线上有两点A与B,图中有线段___条;
(2)拓展延伸:
图2直线上有A,B,C三个点,以A为端点,有线段AB,线段AC;同样以C为端点,有线段CA,线段CB;以B为端点,有线段BA,线段BC,去除重复线段,图2共有___条线段;
同样方法探究出图3中有_____条线段;
(3)探索归纳:
如果直线上有n(n为正整数)个点,则共有________条线段.(用含n的式子表示)
(4)解决问题:
①中职篮(CBA)2018——2019赛季,比赛队伍数仍然为20支,截止2018年12月14日,赛程已经过半(每两队之间都赛了一场),请你帮助计算一下目前一共进行了多少场比赛?
②2018年11月30日,赤峰至京沈高铁喀左站客运专线路基工程全部完成,将正式进入轨道铺设阶段,预计2020年7月1日通车,北京至赤峰有北京星火站,顺义西站,怀柔南站,密云站,兴隆西站,安匠站,承德南站,承德县北站,平泉北站,牛河梁站,喀左站,宁城站、平庄西站、赤峰西站等共计14个车站,请你帮助计算一下,应该设计多少种高铁车票?
相关试题