【题目】某中学开展了“手机伴我健康行”主题活动.他们随机抽取部分学生进行“手机使用目的”和“每周使用手机时间”的问卷调查,并绘制成如图①②的统计图。已知“查资料”人人数是40人。
![]()
请你根据以上信息解答以下问题
(1)在扇形统计图中,“玩游戏”对应的圆心角度数是_______________。
(2)补全条形统计图
(3)该校共有学生1200人,估计每周使用手机时间在2小时以上(不含2小时)的人数
参考答案:
【答案】(1)126°(2)32人(3)768人
【解析】
试题分析:(1)根据扇形统计图求出所占的百分比,然后乘以360°即可;
(2)利用“查资料”人人数是40人,查资料”人占总人数40%,求出总人数100,再求出32人 ;
(3)用部分估计整体.
试题解析:(1)126°
(2)40÷40%-2-16-18-32=32人
(3)1200×
=768人
-
科目: 来源: 题型:
查看答案和解析>>【题目】直线y=kx+b与反比例函数y=
(x>0)的图象分别交于点 A(m,3)和点B(6,n),与坐标轴分别交于点C和点D.(1)求直线AB的解析式;
(2)若点P是x轴上一动点,当△COD与△ADP相似时,求点P的坐标.

-
科目: 来源: 题型:
查看答案和解析>>【题目】中华商场将进价为40元的衬衫按50元售出时,每月能卖出500件,经市场调查,这种衬衫每件涨价4元,其销售量就减少40件.如果商场计划每月赚得8000元利润,那么售价应定为多少?这时每月应进多少件衬衫?
-
科目: 来源: 题型:
查看答案和解析>>【题目】(1)根据下列叙述填依据:
已知:如图①,AB∥CD,∠B+∠BFE=180°,求∠B+∠BFD+∠D的度数.
解:因为∠B+∠BFE=180°,
所以AB∥EF( ).
又因为AB∥CD,
所以CD∥EF( ).
所以∠CDF+∠DFE=180°( ).
所以∠B+∠BFD+∠D=∠B+∠BFE+∠DFE+∠D=360°.
(2)根据以上解答进行探索:如图②,AB∥EF,∠BDF与∠B,∠F有何数量关系?并说明理由.
(3)如图③④,AB∥EF,你能探索出图③、图④两个图形中,∠BDF与∠B,∠F的数量关系吗?请直接写出结果.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图 (1),已知△ABC是等边三角形,以BC为直径的⊙O交AB、AC于D、E.求证:

(1)△DOE是等边三角形.
(2)如图(2),若∠A=60°,AB≠AC, 则(1)中结论是否成立?如果成立,请给出证明;如果不成立,请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】(本题满分10分)如图,在Rt△ABC中,∠A=90°,BD平分∠ABC,M为边AC上一点,ME⊥BC,垂足为E,∠AME的平分线交直线AB于点F.试说明BD与MF的位置关系,并说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,⊙O的直径AB为10cm,弦AC为6cm,∠ACB的平分线交⊙O于D,求BC,AD,BD的长.

相关试题