【题目】如图,在△ABC中,∠B>∠C,AD⊥BC,垂足为D,AE平分∠BAC.
(1)已知∠B=60°,∠C=30°,求∠DAE的度数;
(2)已知∠B=3∠C,求证:∠DAE=∠C.
![]()
参考答案:
【答案】(1) 15°; (2)证明见解析.
【解析】
试题(1)在△ABC中,由
,
得出∠BAC=90°,由AE平分∠BAC得出∠BAE=45°, 再则AD⊥BC得出∠BAD=90°-∠B,由∠DAE=∠BAE-∠BAD得出角的度数;(2)类似(1)中方法用含∠C的式子求出∠DAE的度数即可;
试题解析:
(1)在△ABC中,∠BAC=180°-∠B-∠C=90°
∵AE平分∠BAC
∴∠BAE=
∠BAC=45°
∵AD⊥BC
∴∠BAD=90°-∠B=30°
∴∠DAE=∠BAE-∠BAD=15° …
(2)证明:在△ABC中,
∵∠B=3∠C
∴∠BAC=180°-∠B-∠C=180°-4∠C
∵AE平分∠BAC
∴∠BAE=
∠BAC=90°-2∠C
∵AD⊥BC
∴∠BAD=90°-∠B=90°-3∠C
∴∠DAE=∠BAE-∠BAD=(90°-2∠C)-(90°-3∠C)=∠C
即∠DAE=∠C.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,点O是边AC上一个动点,过点O作直线EF∥BC分别交∠ACB、外角∠ACD的平分线于点E、F.

(1)若CE=8,CF=6,求OC的长;
(2)连接AE、AF.问:当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:∠AOB和两点C、D,求作一点P,使PC=PD,且点P到∠AOB的两边的距离相等.(要求:用尺规作图,保留作图痕迹,不写作法,不要求证明)

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知,如图,∠XOY=90°,点A、B分别在射线OX、OY上移动,BE是∠ABY的平分线,BE的反向延长线与∠OAB的平分线相交于点C,试问∠ACB的大小是否发生变化?如果保持不变,请给出证明;如果随点A、B移动发生变化,请求出变化范围.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,已知四边形ABCD,ADEF都是菱形,∠BAD=∠FAD,∠BAD为锐角.

(1)求证:AD⊥BF;
(2)若BF=BC,求∠ADC的度数. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,矩形ABCD的对角线AC,BD相交于点O,点E,F在BD上,BE=DF.

(1)求证:AE=CF;
(2)若AB=6,∠COD=60°,求矩形ABCD的面积. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AE∥BF,AC平分∠BAE,且交BF于点C,BD平分∠ABF,且交AE于点D,连接CD.

(1)求证:四边形ABCD是菱形;
(2)若∠ADB=30°,BD=6,求AD的长.
相关试题