【题目】某天,小王去朋友家借书,在朋友家停留一段时间后,返回家中,如图是他离家的路程 (千米)与时间 (分)关系的图象,根据图象信息,下列说法正确的是 ( )
![]()
A. 小王去时的速度大于回家的速度 B. 小王去时走上坡路,回家时走下坡路
C. 小王去时所花时间少于回家所花时间 D. 小王在朋友家停留了
分
参考答案:
【答案】D
【解析】A、根据速度=路程÷时间,可求出小王去时的速度和回家的速度,比较后可得出A不正确;B、题干中未给出路况如何,故B不正确;C、先求出小王回家所用时间,比较后可得出C不正确;D、观察函数图象,求出小王在朋友家停留的时间,故D正确.综上即可得出结论.
A、小王去时的速度为2000÷20=100(米/分),
小王回家的速度为2000÷(40-30)=200(米/分),
∵100<200,
∴小王去时的速度小于回家的速度,A不正确;
B、∵题干中未给出小王去朋友家的路有坡度,
∴B不正确;
C、40-30=10(分),
∵20>10,
∴小王去时所花时间多于回家所花时间,C不正确;
D、∵30-20=10(分),
∴小王在朋友家停留了10分,D正确.
故选:D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图B,E,C,F, 四点在同一条直线上,EB=CF,∠DEF=∠ABC,添加以下哪一个条件不能判断 △ABC≌△DEF 的是 ( )

A. ∠A=∠D B. DF∥AC C. AC=DF D. AB=DE
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线y=ax2+bx+c(a≠0)与x轴交于A、B两点,与y轴交于点C(0,3),且此抛物线的顶点坐标为M(﹣1,4).

(1)求此抛物线的解析式;
(2)设点D为已知抛物线对称轴上的任意一点,当△ACD与△ACB面积相等时,求点D的坐标;
(3)点P在线段AM上,当PC与y轴垂直时,过点P作x轴的垂线,垂足为E,将△PCE沿直线CE翻折,使点P的对应点P′与P、E、C处在同一平面内,请求出点P′坐标,并判断点P′是否在该抛物线上. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,以菱形ABCD对角线交点为坐标原点,建立平面直角坐标系,A、B两点的坐标分别为(﹣2
,0)、(0,﹣
),直线DE⊥DC交AC于E,动点P从点A出发,以每秒2个单位的速度沿着A→D→C的路线向终点C匀速运动,设△PDE的面积为S(S≠0),点P的运动时间为t秒.
(1)求直线DE的解析式;
(2)求S与t之间的函数关系式,并写出自变量t的取值范围;
(3)当t为何值时,∠EPD+∠DCB=90°?并求出此时直线BP与直线AC所夹锐角的正切值. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC 中,AB=AC,AB 的垂直平分线交 AB 于点 D,交 CA 的延长线于点 E,∠EBC=42°,则 ∠BAC=( )

A. 159° B. 154° C. 152° D. 138°
-
科目: 来源: 题型:
查看答案和解析>>【题目】某一项工程,在工程招标时,接到甲、乙两个工程队的投标书,施工一天,需付甲工程队工程款1.5万元,乙工程队工程款1.1万元,工程领导小组根据甲乙两队的投标书测算,可有三种施工方案:
(1)甲队单独完成这项工程刚好如期完成;
(2)乙队单独完成这项工程要比规定日期多用5天;
(3)若甲、乙两队合作4天,余下的工程由乙队单独也正好如期完成.
在不耽误工期的情况下,你觉得那一种施工方案最节省工程款?
-
科目: 来源: 题型:
查看答案和解析>>【题目】某商场为了吸引顾客,设立了一个可以自由转动的转盘(转盘被等分成
个扇形,如图)并规定:顾客在本商场每消费
元,就能获得一次转动转盘的机会,如果转盘停止后,指针正好对准红、黄或绿色区域,顾客就可以分别获得 100 元、 50 元、 20 元的购物券.某顾客消费 210 元,他转动转盘获得购物券的概率是多少?他得到 100 元、 50 元、 20 元购物券的概率分别是多少?
相关试题