【题目】如图,在等腰直角△ABC中,∠ACB=90°,点D为三角形内一点,且∠ACD=∠DAB=∠DBC. ![]()
(1)求∠CDB的度数;
(2)求证:△DCA∽△DAB;
(3)若CD的长为1,求AB的长.
参考答案:
【答案】
(1)解:∵△ABC为等腰直角三角形,
∴∠CAB=45°.
又∵∠ACD=∠DAB,
∴∠ACD+∠CAD=∠DAB+∠CAD=∠CAB=45°,
∴∠CDA=135°
同理可得∠ADB=135°
∴∠CDB=360°﹣∠CDA﹣∠ADB=360°﹣135°﹣135°=90°
(2)证明:∵∠CDA=∠ADB,∠ACD=∠DAB,
∴△DCA∽△DAB
(3)解:∵△DCA∽△DAB,
∴
=
=
=
,
又∵CD=1,
∴AD=
,DB=2.
又∵∠CDB=90°,
∴BC=
=
=
,
在Rt△ABC中,∵AC=BC=
,
∴AB=
=
.
![]()
【解析】(1)只要证明∠CDA=135°,∠ADB=135°即可解决问题.(2)根据两角对应相等两三角形相似即可判定.(3)由△DCA∽△DAB,推出
=
=
=
,又CD=1,推出AD=
,DB=2.根据BC=
,求出BC,再在Rt△ABC中,求出AB即可解决问题.
【考点精析】根据题目的已知条件,利用等腰直角三角形和相似三角形的判定与性质的相关知识可以得到问题的答案,需要掌握等腰直角三角形是两条直角边相等的直角三角形;等腰直角三角形的两个底角相等且等于45°;相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方.
-
科目: 来源: 题型:
查看答案和解析>>【题目】关于x的不等式组
的解集中至少有5个整数解,则正数a的最小值是( )
A.3
B.2
C.1
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】阅读理解:用“十字相乘法”分解因式2x2﹣x﹣3的方法.
(i)二次项系数2=1×2;
(ii)常数项﹣3=﹣1×3=1×(﹣3),验算:“交叉相乘之和”;
1×3+2×(﹣1)=1 1×(﹣1)+2×3=5 1×(﹣3)+2×1=﹣1 1×1+2×(﹣3)=﹣5
(iii)发现第③个“交叉相乘之和”的结果1×(﹣3)+2×1=﹣1,等于一次项系数﹣1.
即:(x+1)(2x﹣3)=2x2﹣3x+2x﹣3=2x2﹣x﹣3,则2x2﹣x﹣3=(x+1)(2x﹣3).
像这样,通过十字交叉线帮助,把二次三项式分解因式的方法,叫做十字相乘法.仿照以上方法,分解因式:3x2+5x﹣12= . -
科目: 来源: 题型:
查看答案和解析>>【题目】某电视台在它的娱乐性节目中每期抽出两名场外幸运观众,有一期甲、乙两人被抽为场外幸运观众,他们获得了一次抽奖的机会,在如图所示的翻奖牌的正面4个数字中任选一个,选中后翻开,可以得到该数字反面的奖品,第一个人选中的数字第二个人不能再选择了.

(1)如果甲先抽奖,那么甲获得“手机”的概率是多少?
(2)小亮同学说:甲先抽奖,乙后抽奖,甲、乙两人获得“手机”的概率不同,且甲获得“手机”的概率更大些.你同意小亮同学的说法吗?为什么?请用列表或画树状图分析. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知反比例函数y=
(k≠0)的图象经过点B(3,2),点B与点C关于原点O对称,BA⊥x轴于点A,CD⊥x轴于点D.
(1)求这个反比函数的解析式;
(2)求△ACD的面积. -
科目: 来源: 题型:
查看答案和解析>>【题目】矩形ABCD中,E、F分别是AD、BC的中点,CE、AF分别交BD于G、H两点.

求证:
(1)四边形AFCE是平行四边形;
(2)证明:EG=FH. -
科目: 来源: 题型:
查看答案和解析>>【题目】甲、乙两运动员的射击成绩(靶心为10环)统计如下表(不完全):
次数
运动员1
2
3
4
5
甲
10
8
9
10
8
乙
10
9
9
a
b
某同学计算出了甲的成绩平均数是9,方差是
S甲2=
[(10﹣9)2+(8﹣9)2+(9﹣9)2+(10﹣9)2+(8﹣9)2]=0.8,请作答:
(1)在图中用折线统计图将甲运动员的成绩表示出来;
(2)若甲、乙射击成绩平均数都一样,则a+b=;
(3)在(2)的条件下,当甲比乙的成绩较稳定时,请列举出a、b的所有可能取值,并说明理由.
相关试题