【题目】幻方起源于中国,传说在大禹治水时,有只神龟在洛水中浮起,龟背上有奇特的图案,如图1,人们称之为洛书.如果将龟背上的数字翻译出来,如图2.
![]()
观察发现,图2的每行、每列、每条对角线的三个数之和都是15.像这样,在3×3的方阵图中,每行、每列、每条对角线上3个数的和都相等,我们就称它为三阶幻方.上面的三阶幻方中,15是这个幻方的和,简称幻和.5是幻方最中心的数字,简称中心数.
(1)用﹣10,﹣8,﹣6,﹣4,﹣2,0,2,4,6这九个数字补全图3中的幻方;
(2)如图4是一个三阶幻方,试确定图4中x的值,并给出求解过程.
参考答案:
【答案】(1)见解析;(2)图4中的x的值为6.求解过程见解析.
【解析】
(1)根据每行、每列、每条对角线上3个数的和都相等即可补全图形;
(2)根据图2、3发现规律,利用规律求解即可.
(1)根据题意,得:
![]()
(2)根据图2、3的规律,可知:2x=﹣2008+2020,即x=
(﹣2008+2020)=6,
故图4中x的值为6.
-
科目: 来源: 题型:
查看答案和解析>>【题目】计算:
(1)2+(﹣1)=_____.
(2)(﹣2008)×0=_____.
(3)
=_____.(4)
=_____.(5)2a2﹣3a2=_____.
(6)﹣2(x﹣1)=_____.
(7)方程7x=﹣2的解x=_____.
-
科目: 来源: 题型:
查看答案和解析>>【题目】中国高铁迅猛发展,给我们的出行带来极大的便捷,如图1,是某种新设计动车车头的纵截面一部分,曲线OBA是一开口向左,对称轴正好是水平线OC的抛物线的一部分,点A、B是车头玻璃罩的最高点和最低点,AC、BD是两点到车厢底部的距离,OD=1.5米,BD=1.5米,AC=3米,请你利用所学的函数知识解决以下问题.
(1)为了方便研究问题,需要把曲线OBA绕点O旋转转化为我们熟悉的函数,请你在所给的方框内,画出你旋转后函数图象的草图,在图中标出点O、A、B、C、D对应的位置,并求你所画的函数的解析式.
(2)如图2,驾驶员座椅安装在水平线OC上一点P处,实验表明:当PA+PB最小时,驾驶员驾驶时视野最佳,为了达到最佳视野,求OP的长.
(3)驾驶员头顶到玻璃罩的高度至少为0.3米才感到压抑,一个驾驶员坐下时头顶到椅面的距离为1米,在(2)的情况下,座椅最多条件到多少时他才感到舒适?

-
科目: 来源: 题型:
查看答案和解析>>【题目】计算:
(1)﹣4.2+5.7﹣5.8+10
(2)(﹣3)×(﹣4)﹣60÷|﹣12|
(3)

(4)﹣14+[(﹣3)2﹣(1﹣22)×2]
-
科目: 来源: 题型:
查看答案和解析>>【题目】某公司计划从两家皮具生产能力相近的制造厂选择一家来承担外销业务,这两家厂生产的皮具款式和材料都符合要求,因此只需要检测皮具质量的克数是否稳定,现从两家提供的样品中各抽取了6件进行检查,超过标准质量部分记为正数,不足部分记为负数,若该皮具的标准质量为500克,测得它们质量如下(单位:g)
厂家
超过标准质量的部分
甲
﹣3
0
0
1
2
0
乙
﹣2
1
﹣1
0
1
1
(1)分别计算甲、乙两厂抽样检测的皮具总质量各是多少克?
(2)通过计算,你认为哪一家生产皮具的质量比较稳定?
-
科目: 来源: 题型:
查看答案和解析>>【题目】某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元,经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:
售价x(元/千克)
50
60
70
销售量y(千克)
100
80
60
(1)求y与x之间的函数表达式;
(2)设商品每天的总利润为W(元),则当售价x定为多少元时,厂商每天能获得最大利润?最大利润是多少?
(3)如果超市要获得每天不低于1350元的利润,且符合超市自己的规定,那么该商品每千克售价的取值范围是多少?请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,若点A在数轴上对应的数为a,点B在数轴上对应的数为b,点C在数轴上对应的数为c,且|a+2|+(b﹣1)2=0,2c﹣1=
c+2.
(1)求线段AB的长;
(2)在数轴上是否存在点P,使得PA+PB=PC?若存在,求出点P对应的数;若不存在,说明理由.
(3)现在点A,B,C开始在数轴上运动,若点A以每秒1个单位长度向左运动,同时,点B和点C分别以每秒4个单位长度和9个单位长度的速度向右运动.假设t秒后,点B和点C之间的距离表示为BC,点A和点B之间的距离表示为AB.请问AB﹣BC的值是否随着时间t的变化而变化?若变化,请说明理由;若不变,请求出常数值.
相关试题