【题目】已知:如图△ABC三个顶点的坐标分别为A(0,﹣3)、B(3,﹣2)、C(2,﹣4),正方形网格中,每个小正方形的边长是1个单位长度.
(1)画出△ABC向上平移6个单位得到的△A1B1C1;
(2)以点C为位似中心,在网格中画出△A2B2C2,使△A2B2C2与△ABC位似,且△A2B2C2与△ABC的位似比为2:1,并直接写出点A2的坐标.
![]()
参考答案:
【答案】(1)作图见解析;(2)作图见解析;A2坐标(﹣2,﹣2).
【解析】试题分析(1)直接利用平移的性质得出对应点位置进而得出答案;
(2)利用位似图形的性质得出对应点的位置进而得出.
试题解析:⑴如图所示: △A1B1C1,即为所求;⑵如图所示△A2B2C2,即为所求;A2坐标(-2,-2)
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】某工厂计划生产A、B两种产品共10件,其生产成本和利润如下表:

(1)若工厂计划获利14万元,问A、B两种产品应分别生产多少件?
(2)若工厂投入资金不多于44万元,且获利多于14万元,问工厂有哪几种生产方案?
(3)在(2)条件下,哪种方案获利最大?并求最大利润.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,在平面直角坐标系中,已知点A(0,a),B(0,b)在y轴上,点 C(m,b)是第四象限内一点,且满足
,△ABC的面积是56;AC交x轴于点D,E是y轴负半轴上的一个动点.(1)求C点坐标;
(2)如图2,连接DE,若DE
AC于D点,EF为∠AED的平分线,交x轴于H点,且∠DFE=90°,求证:FD平分∠ADO;(3)如图3,E在y轴负半轴上运动时,连EC,点P为AC延长线上一点,EM平分 ∠AEC,且PM⊥EM于M点,PN⊥x轴于N点,PQ平分∠APN,交x轴于Q点,则E在运动过程中,
的大小是否发生变化,若不变,求出其值;若变化,请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AF∥CD,CB平分∠ACD,BD平分∠EBF,且BC⊥BD,下列结论:① BC平分∠ABE;② AC∥BE;③ ∠CBE+∠D=90°;④ ∠DEB=2∠ABC.其中正确结论的个数有( )

A.1个B.2个C.3个D.4个
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:关于x的一次函数y=(2m-1)x+m -2,若它的函数值y随x的增大而增大,且图象与y轴负半轴相交,且m为正整数.
(1)求这个函数的解析式.
(2)求直线y=-x和(1)中函数的图象与x轴围成的三角形面积.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,∠ACB=90°,点G是△ABC的重心,且AG⊥CG,CG的延长线交AB于H.
(1)求证:△CAG∽△ABC;
(2)求S△AGH:S△ABC的值.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线
的图象与x轴交于A、B两点,与y轴交于C点,已知点B坐标为(4,0).
(1)求抛物线的解析式;
(2)判断△ABC的形状,直接写出△ABC外接圆的圆心坐标.
相关试题