【题目】如图,△ACB与△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,点D为AB边上的一点,
![]()
(1)试说明:∠EAC=∠B;
(2)若AD=10,BD=24,求DE的长.
参考答案:
【答案】(1)证明见解析;(2)DE=26.
【解析】
试题分析:(1)由于△ACB与△ECD都是等腰直角三角形,CD=CE,CB=CA,∠B=∠CAB=45°,∠ACB=∠ECD=90°,于是∠ACE+∠ACD=∠ACD+∠BCD,根据等式性质可得∠ACE=∠BCD,利用SAS可证△ACE≌△BCD,利用全等三角形的对应角相等即可解答;
(2)根据△ACE≌△BCD,于是∠EAC=∠B=45°,AE=BD=24,易求∠EAD=90°,再利用勾股定理可求DE=26.
解:(1)∵∠ACB=∠ECD=90°,
∴∠ACB﹣∠ACD=∠ECD﹣∠ACD,
∴∠ECA=∠DCB,
∵△ACB和△ECD都是等腰三角形,
∴EC=DC,AC=BC,
在△ACE和△BCD中,
,
∴△ACE≌△BCD,
∴∠EAC=∠B.
(2)∵△ACE≌△BCD,
∴AE=BD=24,
∵∠EAC=∠B=45°
∴∠EAD=∠EAC+∠CAD=90°,
∴在Rt△ADE中,DE2=EA2+AD2,
∴DE2=102+242,
∴DE=26.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知一纸箱中装有5个只有颜色不同的球,其中2个白球,3个红球.
(1)求从箱中随机取出一个白球的概率是 ;
(2)若往装有5个球的原纸箱中,再放入x个白球和y个红球,从箱中随机取出一个白球的概率是
,则y与x的函数解析式为 . -
科目: 来源: 题型:
查看答案和解析>>【题目】如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是( )
A. 锐角三角形 B. 钝角三角形 C. 直角三角形 D. 不能确定
-
科目: 来源: 题型:
查看答案和解析>>【题目】若(x﹣1)(x+3)=x2+px﹣3,则p=_____.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,直线AB与x轴交于点A(﹣2,0),与x轴夹角为30°,将△ABO沿直线AB翻折,点O的对应点C恰好落在双曲线y=
(k≠0)上,则k的值为( )
A.4 B.﹣2 C.
D.﹣
-
科目: 来源: 题型:
查看答案和解析>>【题目】张老师利用休息时间组织学生测量山坡上一棵大树CD的高度,如图,山坡与水平面成30°角(即∠MAN=30°),在山坡底部A处测得大树顶端点C的仰角为45°,沿坡面前进20米,到达B处,又测得树顶端点C的仰角为60°(图中各点均在同一平面内),求这棵大树CD的高度(结果精确到0.1米,参考数据:
≈1.732)
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在边长为4的正方形ABCD中,请画出以A为一个顶点,另外两个顶点在正方形ABCD的边上,且含边长为3的所有大小不同的等腰三角形.(要求:只要画出示意图,并在所画等腰三角形长为3的边上标注数字3)

相关试题