【题目】如图,在梯形ABCD中,AD∥BC,AD=6cm,CD=4cm,BC=BD=10cm,点P由B出发沿BD方向匀速运动,速度为1cm/s;同时,线段EF由DC出发沿DA方向匀速运动,速度为1cm/s,交BD于Q,连接PE,若设运动时间为t(s)(0<t<5),解答下列问题:
(1)当t为何值时,PE∥AB;
(2)设△PEQ的面积为y(cm2),求y与t之间的函数关系式;
(3)是否存在某一时刻t,使
?若存在,求出此时t的值;若不存在,说明理由;
(4)连接PF,在上述运动过程中,五边形PFCDE的面积是否发生变化?说明理由
![]()
参考答案:
【答案】(1)
;(2)
;(3)1或4;(4)不会发生变化,理由见解析.
【解析】试题分析:(1)若要PE∥AB,则应有DE:DA=DP:DB,故用t表示DE和DP后,代入上式求得t的值;
(2)过B作BM⊥CD,交CD于M,过P作PN⊥EF,交EF于N.由题意知,四边形CDEF是平行四边形,可证得△DEQ∽△BCD,得到DE:BC=EQ:CD,求得EQ的值,再由△PNQ∽△BMD,得到PQ:BD=PN:BM,求得PN的值,利用S△PEQ=
EQPN得到y与t之间的函数关系式;
(3)利用
建立方程,求得t的值;
(4)易得△PDE≌△FBP,故有S五边形PFCDE=S△PDE+S四边形PFCD=S△FBP+S四边形PFCD=S△BCD,即五边形的面积不变.
解:(1)当PE∥AB时,
∴DE:DA=DP:DB.
而DE=t,DP=10t,
∴t:6=(10t):10,
∴t=
,
∴当t=
(s),PE∥AB.
(2)∵线段EF由DC出发沿DA方向匀速运动,
∴EF平行且等于CD,
∴四边形CDEF是平行四边形。
∴∠DEQ=∠C,∠DQE=∠BDC.
∵BC=BD=10,
∴△DEQ∽△BCD.
∴DE:BC=EQ:CD.
t:10=EQ:4.
∴EQ=
t.
过B作BM⊥CD,交CD于M,过P作PN⊥EF,交EF于N,
![]()
∵BC=BD,BM⊥CD,CD=4cm,
∴CM=
CD=2cm,
∴BM=
cm,
∵EF∥CD,
∴∠BQF=∠BDC,∠BFG=∠BCD,
又∵BD=BC,
∴∠BDC=∠BCD,
∴∠BQF=∠BFG,
∵ED∥BC,
∴∠DEQ=∠QFB,>
又∵∠EQD=∠BQF,
∴∠DEQ=∠DQE,
∴DE=DQ,
∴ED=DQ=BP=t,
∴PQ=102t.
又∵△PNQ∽△BMD,
∴PQ:BD=PN:BM.
∴(102t):10=PN:
.
∴PN=
(1
).
∴S△PEQ=
EQPN=
×
×
(1
)
.
(3)S△BCD=
CDBM=
×4×
=![]()
若S△PEQ=
S△BCD,
则有
,
解得t1=1,t2=4.
(4)在△PDE和△FBP中,
∵DE=BP=t,PD=BF=10t,∠PDE=∠FBP,
∴△PDE≌△FBP(SAS).
∴S五边形PFCDE=S△PDE+S四边形PFCD=S△FBP+S四边形PFCD=S△BCD=
.
∴在运动过程中,五边形PFCDE的面积不变.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某市为了打造森林城市,树立城市新地标,实现绿色、共享发展理念,在城南建起了“望月阁”及环阁公园.小亮、小芳等同学想用一些测量工具和所学的几何知识测量“望月阁”的高度,来检验自己掌握知识和运用知识的能力.他们经过观察发现,观测点与“望月阁”底部间的距离不易测得,因此经过研究需要两次测量,于是他们首先用平面镜进行测量.方法如下:如图,小芳在小亮和“望月阁”之间的直线BM上平放一平面镜,在镜面上做了一个标记,这个标记在直线BM上的对应位置为点C,镜子不动,小亮看着镜面上的标记,他来回走动,走到点D时,看到“望月阁”顶端点A在镜面中的像与镜面上的标记重合,这时,测得小亮眼睛与地面的高度ED=1.5米,CD=2米,然后,在阳光下,他们用测影长的方法进行了第二次测量,方法如下:如图,小亮从D点沿DM方向走了16米,到达“望月阁”影子的末端F点处,此时,测得小亮身高FG的影长FH=2.5米,FG=1.65米.
如图,已知AB⊥BM,ED⊥BM,GF⊥BM,其中,测量时所使用的平面镜的厚度忽略不计,请你根据题中提供的相关信息,求出“望月阁”的高AB的长度.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,已知点A(-2,0),B(0,3),O 为原点.
(1)求三角线 AOB 的面积;
(2)将线段 AB 沿 x 轴向右平移4个单位,得线段A′B′,x轴上有一点C满足三角形A′B′C的面积为 9 ,求点C的坐标.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知2x﹣y=4.
(1)用含x的代数式表示y的形式为 .
(2)若y≤3,求x的取值范围.
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列说法正确的个数是( )
①同位角相等;②过一点有且只有一条直线与已知直线垂直;③过一点有且只有一条直线与已知直线平行;④三条直线两两相交,总有三个交点.
A.3个B.2个C.1个D.0个
-
科目: 来源: 题型:
查看答案和解析>>【题目】一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为 x(h),两车之间的距离为 y(km),图中的折线表示y与x之间的函数关系.根据题中所给信息解答以下问题:
(1)甲、乙两地之间的距离为______ km ;图中点 C 的实际意义为:______;慢车的速度为______,快车的速度为______;
(2)求线段 BC 所表示的 y 与 x 之间的函数关系式;(3)若在第一列快车与慢车相遇时,第二列快车从乙地出发驶往甲地,速度与第一列快车相同.求第二列快车出发多长时间,与慢车相距200km.

-
科目: 来源: 题型:
查看答案和解析>>【题目】下列运算正确的是( )
A.(a+1)2=a2+1B.(a-b)3(b-a)2=(a-b)5C.(﹣2ab2)3=8a3b6 D.2x3x2=x6
相关试题