【题目】如图,在边长为8的正方形ABCD中,点O为AD上一动点(4<OA<8),以O为圆心,OA的长为半径的圆交边CD于点M,连接OM,过点M作⊙O的切线交边BC于N.![]()
(1)求证:△ODM∽△MCN;
(2)设DM=x,求OA的长(用含x的代数式表示);
(3)在点O的运动过程中,设△CMN的周长为P,试用含x的代数式表示P,你能发现怎样的结论?
参考答案:
【答案】
(1)证明:∵MN切⊙O于点M,
∴∠OMN=90°;
∵∠OMD+∠CMN=90°,∠CMN+∠CNM=90°;
∴∠OMD=∠MNC;
又∵∠D=∠C=90°;
∴△ODM∽△MCN
(2)解:在Rt△ODM中,DM=x,设OA=OM=R;
∴OD=AD﹣OA=8﹣R,
由勾股定理得:(8﹣R)2+x2=R2,
∴64﹣16R+R2+x2=R2,
∴ ![]()
(3)解法一:∵CM=CD﹣DM=8﹣x,
又∵
,
且有△ODM∽△MCN,
∴
,
∴代入得到
;
同理
,
∴代入得到
;
∴△CMN的周长为P=
=(8﹣x)+(x+8)=16.
发现:在点O的运动过程中,△CMN的周长P始终为16,是一个定值.
解法二:在Rt△ODM中,
,
设△ODM的周长P′=
;
而△MCN∽△ODM,且相似比
;
∵
,
∴△MCN的周长为P=
.
发现:在点O的运动过程中,△CMN的周长P始终为16,是一个定值.
【解析】(1)由“两角法”易证相似;(2)由勾股定理构建方程(8﹣R)2+x2=R2,解方程可表示出OA;(3)△CMN的周长为P= C M + C N + M N,分别用x的代数式表示CM、CN、MN,相加得出是定值16.
【考点精析】认真审题,首先需要了解相似三角形的判定与性质(相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方).
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图(1),AB∥CD,猜想∠BPD与∠B.∠D的关系,说明理由.(提示:三角形的内角和等于180°)
①填空或填写理由
解:猜想∠BPD+∠B+∠D=360°
理由:过点P作EF∥AB,
∴∠B+∠BPE=180°______
∵AB∥CD,EF∥AB,
∴______∥_____,(如果两条直线都和第三条直线平行,那么这两条直线也互相平行)
∴∠EPD+______=180°
∴∠B+∠BPE+∠EPD+∠D=360°
∴∠B+∠BPD+∠D=360°
②依照上面的解题方法,观察图(2),已知AB∥CD,猜想图中的∠BPD与∠B.∠D的关系,并说明理由.

③观察图(3)和(4),已知AB∥CD,直接写出图中的∠BPD与∠B.∠D的关系,不说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】解方程:
(1)36x2-49=0;
(2)(x-3)2=64;
(3)8x3﹣27=0;
(4)4(x﹣1)2﹣121=0.
-
科目: 来源: 题型:
查看答案和解析>>【题目】△ABC在平面直角坐标系xOy中的位置如图所示.

(1)作△ABC关于点C成中心对称的△A1B1C1.
(2)将△A1B1C1向右平移4个单位,作出平移后的△A2B2C2.
(3)在x轴上求作一点P,使PA1+PC2的值最小,并写出点P的坐标(不写解答过程,直接写出结果)
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,E点为DF上的点,B为AC上的点,∠1=∠2,∠C=∠D.

试说明:AC∥DF.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:Rt△ABC的斜边长为5,斜边上的高为2,将这个直角三角形放置在平面直角坐标系中,使其斜边AB与x轴重合(其中OA<OB),直角顶点C落在y轴正半轴上(如图1).

(1)求线段OA,OB的长和经过点A,B,C的抛物线的关系式.
(2)如图2,点D的坐标为(2,0),点P(m,n)是该抛物线上的一个动点(其中m>0,n>0),连接DP交BC于点E.
①当△BDE是等腰三角形时,直接写出此时点E的坐标.
②又连接CD、CP(如图3),△CDP是否有最大面积?若有,求出△CDP的最大面积和此时点P的坐标;若没有,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】甲有存款600元,乙有存款2000元,从本月开始,他们进行零存整取储蓄,甲每月存款500元,乙每月存款200元.
(1)列出甲、乙的存款额y1、y2(元)与存款月数x(月)之间的函数关系式,画出函数图象.
(2)请问到第几个月,甲的存款额超过乙的存款额?
相关试题