【题目】A地某厂和B地某厂同时制成机器若干台,A地某厂可支援外地10台,B地某厂可支援外地4台,现决定给C地8台,D地6台.已知从A运往D、C两地的运费分别是200元每台、400元每台,从B运往D、C两地的运费分别是150元每台、250元每台.
(1)设B地某厂运往D地x台,求总运费为多少元?
(2)在(1)中,当x=2时,总运费是多少元?
参考答案:
【答案】(1)100x+3800(2)4000
【解析】
(1)根据B地某厂运往D地x台,分别表示出B运往C地,A运往D、C地的台数,根据各自的运费列出总运费即可;
(2)把x=2代入(1)化简的结果中计算即可.
解:(1)设B地某厂运往D地x台,则B地某厂运往C地(4-x)台,A地某厂运往D地(6﹣x)台,A地某厂运往C地
=(4+x)台,
根据题意得:200(6﹣x)+400(4+x)+150x+250(4﹣x)
=1200﹣200x+1600+400x+150x+1000﹣250x
=100x+3800,
则总运费为(100x+3800)元;
(2)当x=2时,总运费为200+3800=4000(元).
故答案为:(1)100x+3800(2)4000.
-
科目: 来源: 题型:
查看答案和解析>>【题目】为进一步普及我市中小学生的法律知识,提升学生法律意识,在2018年12月4日第五个国家宪法日来临之际,我市某区在中小学举行了“学习宪法”知识竞赛活动,各类获奖学生人数的比例情况如图所示,其中获得优胜奖的学生共400名,请结合图中信息,解答下列问题:
(1)求获得一等奖的学生人数;
(2)在本次知识竞赛活动中,A,B,C,D四所学校表现突出,现决定从这四所学校中随机选取两所学校举行一场法律知识抢答赛,请用画树状图或列表的方法求恰好选到A,B两所学校的概率.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知a、b、c在数轴上的位置如图所示,回答下列问题:
(1)化简:3|a﹣c|﹣2|﹣a﹣b|;
(2)令y=|x﹣a|+|x﹣b|+|x﹣c|,x满足什么条件时,y有最小值,求最小值

-
科目: 来源: 题型:
查看答案和解析>>【题目】《函数的图象与性质》拓展学习片段展示:

(1)【问题】如图①,在平面直角坐标系中,抛物线y=a(x﹣2)2﹣
经过原点O,与x轴的另一个交点为A,则a= .
(2)【操作】将图①中抛物线在x轴下方的部分沿x轴折叠到x轴上方,将这部分图象与原抛物线剩余部分的图象组成的新图象记为G,如图②.直接写出图象G对应的函数解析式.
(3)【探究】在图②中,过点B(0,1)作直线l平行于x轴,与图象G的交点从左至右依次为点C,D,E,F,如图③.求图象G在直线l上方的部分对应的函数y随x增大而增大时x的取值范围.
(4)【应用】P是图③中图象G上一点,其横坐标为m,连接PD,PE.直接写出△PDE的面积不小于1时m的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,在□ABCD中,点E,F分别在边BC和AD上,且CE=AF,

(1)求证:△ABE ≌ △CDF;
(2)求证:四边形AECF是平行四边形.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,在平面直角坐标系xOy中,正比例函数y=
x的图象经过点A,点A的纵坐标为4,反比例函数y=
的图象也经过点A,第一象限内的点B在这个反比例函数的图象上,过点B作BC∥x轴,交y轴于点C,且AC=AB.求:
(1)这个反比例函数的解析式;
(2)直线AB的表达式. -
科目: 来源: 题型:
查看答案和解析>>【题目】某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需要的时间与原计划生产450台机器所需要的时间相同.
(1)原计划平均每天生产多少台机器?
(2)若该工厂要在不超过5天的时间,生产1100台机器,则平均每天至少还要再多生产多少台机器?
相关试题