【题目】如图,菱形OABC的一边OA在x轴的负半轴上,O是坐标原点,tan∠AOC=
,反比例函数y=
的图象经过点C,与AB交于点D,若△COD的面积为20,则k的值等于 . ![]()
参考答案:
【答案】﹣24
【解析】解:作DE∥AO,CF⊥AO,设CF=4x, ![]()
∵四边形OABC为菱形,
∴AB∥CO,AO∥BC,
∵DE∥AO,
∴S△ADO=S△DEO ,
同理S△BCD=S△CDE ,
∵S菱形ABCO=S△ADO+S△DEO+S△BCD+S△CDE ,
∴S菱形ABCO=2(S△DEO+S△CDE)=2S△CDO=40,
∵tan∠AOC=
,
∴OF=3x,
∴OC=
=5x,
∴OA=OC=5x,
∵S菱形ABCO=AOCF=20x2 , 解得:x=
,
∴OF=
,CF=
,
∴点C坐标为(﹣
,
),
∵反比例函数y=
的图象经过点C,
∴代入点C得:k=﹣24,
所以答案是﹣24.
【考点精析】解答此题的关键在于理解比例系数k的几何意义的相关知识,掌握几何意义:表示反比例函数图像上的点向两坐标轴所作的垂线段与两坐标轴围成的矩形的面积,以及对菱形的性质的理解,了解菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形被两条对角线分成四个全等的直角三角形;菱形的面积等于两条对角线长的积的一半.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣2,与x轴的一个交点在(﹣3,0)和(﹣4,0)之间,其部分图象如图所示,则下列结论:①4a﹣b=0;②c<0;③﹣3a+c>0;④4a﹣2b>at2+bt(t为实数);⑤点(﹣
,y1),(﹣
,y2),(﹣
,y3)是该抛物线上的点,则y1<y2<y3 , 正确的个数有( ) 
A.4个
B.3个
C.2个
D.1个 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在等腰三角形纸片ABC中,AB=AC=10,BC=12,沿底边BC上的高AD剪成两个三角形,用这两个三角形拼成平行四边形,则这个平行四边形较长的对角线的长是 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】经过三边都不相等的三角形的一个顶点的线段把三角形分成两个小三角形,如果其中一个是等腰三角形,另外一个三角形和原三角形相似,那么把这条线段定义为原三角形的“和谐分割线”.如图,线段CD是△ABC的“和谐分割线”,△ACD为等腰三角形,△CBD和△ABC相似,∠A=46°,则∠ACB的度数为 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,等腰直角三角形OA1A2的直角边OA1在y轴的正半轴上,且OA1=A1A2=1,以OA2为直角边作第二个等腰直角三角形OA2A3 , 以OA3为直角边作第三个等腰直角三角形OA3A4 , …,依此规律,得到等腰直角三角形OA2017A2018 , 则点A2017的坐标为 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,平面直角坐标系内,小正方形网格的边长为1个单位长度,△ABC的三个顶点的坐标分别为A(﹣3,4),B(﹣5,2),C(﹣2,1).

(1)画出△ABC关于y轴对称图形△A1B1C1;
(2)画出将△ABC绕原点O逆时针方向旋转90°得到的△A2B2C2;
(3)求(2)中线段OA扫过的图形面积. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0)和点B(3,0),与y轴交于点C,连接BC交抛物线的对称轴于点E,D是抛物线的顶点.

(1)求此抛物线的解析式;
(2)直接写出点C和点D的坐标;
(3)若点P在第一象限内的抛物线上,且S△ABP=4S△COE , 求P点坐标. 注:二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣
,
)
相关试题