【题目】如图,数轴上
、
两点对应的有理数分別为
和
,点
和点
分别同时从点
和点
出发,以每秒
个单位长度,每秒
个单位长度的速度向数轴正方向运动,设运动时间为
秒.
![]()
(1)当
时,则
、
两点对应的有理数分别是______;
_______;
(2)点
是数轴上点
左侧一点,其对应的数是
,且
,求
的值;
(3)在点
和点
出发的同时,点
以每秒
个单位长度的速度从点
出发,开始向左运动,遇到点
后立即返回向右运动,遇到点
后立即返回向左运动,与点
相遇后再立即返回,如此往返,直到
、
两点相遇时,点
停止运动,求点
运动的路程一共是多少个单位长度?点
停止的位置所对应的数是多少?
参考答案:
【答案】(1)24,8;16;(2)
或10;(3)80;40.
【解析】
(1)根据路程=速度×时间,先求出OQ,OP的值,进而可求出PQ的值.
(2)由CB=2CA,可得30-x=2(x-20)或30-x=2(20-x),解方程即可.
(3)设t秒后P、Q相遇.则有4t-2t=20,t=10,此时P、Q、R在同一点,由此可以确定点R的位置.
(1)t=2时,OQ=2×4=8,PA=2×2=4,OP=24,
∴P、Q分别表示24和8,PQ=24-8=16,
故答案为24,8;16.
(2)∵CB=2CA,
∴30-x=2(x-20)或30-x=2(20-x),
∴x=
或10.
(3)设t秒后P、Q相遇.则有4t-2t=20,
∴t=10,
∴R运动的路程一共是8×10=80.
此时P、Q、R在同一点,所以点R的位置所对应的数是40.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,点O为坐标原点,正方形OABC的边OA、OC分别在x轴、y轴上,点B的坐标为(2,2),反比例函数
(x>0,k≠0)的图象经过线段BC的中点D.(1)求k的值;
(2)若点P(x,y)在该反比例函数的图象上运动(不与点D重合),过点P作PR⊥y轴于点R,作PQ⊥BC所在直线于点Q,记四边形CQPR的面积为S,求S关于x的解析式并写出x的取值范围.

-
科目: 来源: 题型:
查看答案和解析>>【题目】某学校计划组织师生参加哈尔滨冰雪节,感受冰雪艺术的魅力.出租公司现有甲、乙两种型号的客车可供租用,且每辆乙型客车的租金比每辆甲型客车少60元.若该校租用3辆甲种客车,4辆乙种客车,则需付租金1720元.
(1)该出租公司每辆甲、乙两型客车的租金各为多少元?
(2)若学校计划租用6辆客车,租车的总租金不超过1560元,那么最多租用甲型客车多少辆?
-
科目: 来源: 题型:
查看答案和解析>>【题目】(1)如图,在平面直角坐标系中,四边形OBCD是正方形,且D(0,2),点E是线段OB延长线上一点,M是线段OB上一动点(不包括点O、B),作MN⊥DM,垂足为M,且MN=DM.设OM=a,请你利用基本活动经验直接写出点N的坐标______(用含a的代数式表示);
(2)如果(1)的条件去掉“且MN=DM”,加上“交∠CBE的平分线与点N”,如图,求证:MD=MN.如何突破这种定势,获得问题的解决,请你写出你的证明过程.
(3)在(2)的条件下,如图,请你继续探索:连接DN交BC于点F,连接FM,下列两个结论:①FM的长度不变;②MN平分∠FMB,请你指出正确的结论,并给出证明.

-
科目: 来源: 题型:
查看答案和解析>>【题目】下列命题中,是真命题的是( )
A. 长分别为32,42,52的线段组成的三角形是直角三角形
B. 连接对角线垂直的四边形各边中点所得的四边形是矩形
C. 一组对边平行且另一组对边相等的四边形是平行四边形
D. 对角线垂直且相等的四边形是正方形
-
科目: 来源: 题型:
查看答案和解析>>【题目】图象中所反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家.其中x表示时 间,y表示张强离家的距离.根据图象提供的信息,以下四个说法错误的是( )

A. 体育场离张强家2.5千米
B. 张强在体育场锻炼了15分钟
C. 体育场离早餐店1.千米
D. 张强从早餐店回家的平均速度是3千米/小时
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点
在同一直线上,
,
,再添加一个条件仍不能证明
的是( )
A.
B.
C.
D.
相关试题