【题目】学校准备购进一批甲、乙两种办公桌若干张,并且每买1张办公桌必须买2把椅子,椅子每把100元,若学校购进20张甲种办公桌和15张乙种办公桌共花费24000元;购买10张甲种办公桌比购买5张乙种办公桌多花费2000元.
(1)求甲、乙两种办公桌每张各多少元?
(2)若学校购买甲乙两种办公桌共40张,且甲种办公桌数量不多于乙种办公桌数量的3倍,请你给出一种费用最少的方案,并求出该方案所需费用.
参考答案:
【答案】(1)甲种办公桌每张400元,乙种办公桌每张600元;(2)当甲种办公桌购买30张,购买乙种办公桌10张时,y取得最小值,最小值为26000元.
【解析】(1)设甲种办公桌每张x元,乙种办公桌每张y元,根据“甲种桌子总钱数+乙种桌子总钱数+所有椅子的钱数=24000、10把甲种桌子钱数-5把乙种桌子钱数+多出5张桌子对应椅子的钱数=2000”列方程组求解可得;
(2)设甲种办公桌购买a张,则购买乙种办公桌(40-a)张,购买的总费用为y,根据“总费用=甲种桌子总钱数+乙种桌子总钱数+所有椅子的总钱数”得出函数解析式,再由“甲种办公桌数量不多于乙种办公桌数量的3倍”得出自变量a的取值范围,继而利用一次函数的性质求解可得.
(1)设甲种办公桌每张x元,乙种办公桌每张y元,
根据题意,得:
,
解得:
,
答:甲种办公桌每张400元,乙种办公桌每张600元;
(2)设甲种办公桌购买a张,则购买乙种办公桌(40-a)张,购买的总费用为y,
则y=400a+600(40-a)+2×40×100
=-200a+32000,
∵a≤3(40-a),
∴a≤30,
∵-200<0,
∴y随a的增大而减小,
∴当a=30时,y取得最小值,最小值为26000元.
-
科目: 来源: 题型:
查看答案和解析>>【题目】观察如图所示的一组图形,其中图形①中共有2颗星,图形②中共有6颗星,图形③中共有11颗星,图形④中共有17颗星,…,按此规律,图形⑧中星星的颗数是_____.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知在平面直角坐标系中有两点A(0,1),B(﹣1,0),动点P在反比例函数y=
的图象上运动,当线段PA与线段PB之差的绝对值最大时,点P的坐标为_____. -
科目: 来源: 题型:
查看答案和解析>>【题目】张老师为了了解班级学生完成数学课前预习的具体情况,对本班部分学生进行了为期半个月的跟踪调查.他将调查结果分为四类:A:很好;B:较好;C:一般;D:较差,并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:

(1)请计算出A类男生和C类女生的人数,并将条形统计图补充完整.
(2)为了共同进步,张老师想从被调查的A类和D类学生中各随机机抽取一位同学进行“一帮一”互助学习,请用画树状图或列表的方法求出所选两位同学恰好是一男一女同学的概率.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在三角形ABC中,AB=6,AC=BC=5,以BC为直径作⊙O交AB于点D,交AC于点G,直线DF是⊙O的切线,D为切点,交CB的延长线于点E.
(1)求证:DF⊥AC;
(2)求tan∠E的值.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,△ABC与△ADE,AB=AC,AD=AE,且∠BAC=∠DAE=40°,CD与BE相交于点F,连接AF则下列结论:①CD=BE:②△ABF≌△ACF;③∠BFD=140°;④FA平分∠BFD;⑤∠FAC=∠FAE.其中正确的结论有( )

A.2个B.3个C.4个D.5个
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知抛物线经过点A(﹣1,0),B(4,0),C(0,2)三点,点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P做x轴的垂线l交抛物线于点Q,交直线BD于点M.
(1)求该抛物线所表示的二次函数的表达式;
(2)已知点F(0,
),当点P在x轴上运动时,试求m为何值时,四边形DMQF是平行四边形?(3)点P在线段AB运动过程中,是否存在点Q,使得以点B、Q、M为顶点的三角形与△BOD相似?若存在,求出点Q的坐标;若不存在,请说明理由.

相关试题