【题目】定义:如图(1),若分别以△ABC的三边AC、BC、AB为边向三角形外侧作正方形ACDE、BCFG和ABMN,则称这三个正方形为△ABC的外展三叶正方形,其中任意两个正方形为△ABC的外展
双叶正方形.
(1)作△ABC的外展双叶正方形ACDE和BCFG,记△ABC,△DCF的面积分别为S1和S2.
①如图(2),当∠ACB=90°时,求证:S1=S2;
②如图(3),当∠ACB≠90°时,S1与S2是否仍然相等,请说明理由.
(2)已知△ABC中,AC=3,BC=4,作其外展三叶正方形,记△DCF、△AEN、△BGM的面积和为S,请利用图(1)探究:当∠ACB的度数发生变化时,S的值是否发生变化?若不变,求出S的值;若变化,求出S的最大值.
![]()
参考答案:
【答案】(1)①证明见解析;②S1=S2,理由见解析;(2)S的值发生变化,S的最大值是18.
【解析】分析:(1)由正方形的性质可以得出AC=DC,BC=FC,∠ACB=∠DCF=90°,就可以得出△ABC≌△DFC而得出结论;
(2)如图3,过点A作AP⊥BC于点P,过点D作DQ⊥FC交FC的延长线于点Q,通过证明△APC≌△DQC就有DQ=AP而得出结论;
(3)如图 1,根据(2)可以得出S=3S△ABC,要使S最大,就要使S△ABC最大,当∠AVB=90°时S△ABC最大,就可以求出结论
解析:(1)证明:如图1,∵正方形ACDE和正方形BCFG,
∴AC=DC,BC=FC,∠ACD=∠BCF=90°,
∵∠ACB=90°,∴∠DCF=90°,
∴∠ACB=∠DCF=90°.
在△ABC和△DFC中,
AC=DC
∠ACB=∠DCF
BC=FC
∴△ABC≌△DFC(SAS).
∴S△ABC=S△DFC,
∴S=S
(2)S1=S2,理由如下:
如图3,过点A作AP⊥BC于点P,过点D作DQ⊥FC交FC的延长线于点Q.
![]()
∴∠APC=∠DQC=90°.
∵四边形ACDE,BCFG均为正方形,
∴AC=CD,BC=CF,
∵∠ACP+∠ACQ=90°,∠DCQ+∠ACQ=90°.
∴∠ACP=∠DCQ.
在△APC和△DQC中
∠APC=∠DQC
∠ACP=∠DCQ
AC=DC
∴△APC≌△DQC(AAS),
∴AP=DQ.
∴BC×AP=DQ×FC,
∴S1=S2;
(3)由(2)得,S是△ABC面积的三倍,
要使S最大,只需三角形ABC的面积最大,
∴当△ABC是直角三角形,即∠ACB=90°时,S有最大值.
此时,S=3S△ABC=3×
=18
-
科目: 来源: 题型:
查看答案和解析>>【题目】若关于x的方程ax2﹣4x﹣1=0是一元二次方程,则a满足的条件是( )
A. a>0 B. a≠0 C. a<0 D. a≠4
-
科目: 来源: 题型:
查看答案和解析>>【题目】计算m2+2m2的结果是( )
A. 2m4 B. 3m2 C. 3m4 D. 2m2
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知如图,∠COD=90°,直线AB与OC交于点B,与OD交于点A,射线OE与射线AF交于点G.
(1)若OE平分∠BOA,AF平分∠BAD,∠OBA=42°,则∠OGA= ;
(2)若∠GOA=
∠BOA,∠GAD=
∠BAD,∠OBA=42°,则∠OGA= ;(3)将(2)中的“∠OBA=42°”改为“∠OBA=
”,其它条件不变,求∠OGA的度数.(用含
的代数式表示)(4)若OE将∠BOA分成1︰2两部分,AF平分∠BAD,∠ABO=
(30°<
<90°) ,求∠OGA的度数.(用含
的代数式表示)
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.
(1)求证:CE=AD;
(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;
(3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】小明编了一个程序:输入任何一个有理数时,显示屏上的结果总等于输入的有理数的平方减去2得到的差。若他第一次输入-3,然后再将所得的结果输入,这时显示屏出现的结果是____________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知△ABC,若将△ABC平移后得到△A′B′C′,且点A(1,0)的对应点A′的坐标是(-1,0),则△ABC是向_____________个单位得到△A′B′C′.
相关试题