【题目】小明编了一个程序:输入任何一个有理数时,显示屏上的结果总等于输入的有理数的平方减去2得到的差。若他第一次输入-3,然后再将所得的结果输入,这时显示屏出现的结果是____________.
参考答案:
【答案】47
【解析】(-3)2-2=7,72-2=47.
故答案为:47.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知如图,∠COD=90°,直线AB与OC交于点B,与OD交于点A,射线OE与射线AF交于点G.
(1)若OE平分∠BOA,AF平分∠BAD,∠OBA=42°,则∠OGA= ;
(2)若∠GOA=
∠BOA,∠GAD=
∠BAD,∠OBA=42°,则∠OGA= ;(3)将(2)中的“∠OBA=42°”改为“∠OBA=
”,其它条件不变,求∠OGA的度数.(用含
的代数式表示)(4)若OE将∠BOA分成1︰2两部分,AF平分∠BAD,∠ABO=
(30°<
<90°) ,求∠OGA的度数.(用含
的代数式表示)
-
科目: 来源: 题型:
查看答案和解析>>【题目】定义:如图(1),若分别以△ABC的三边AC、BC、AB为边向三角形外侧作正方形ACDE、BCFG和ABMN,则称这三个正方形为△ABC的外展三叶正方形,其中任意两个正方形为△ABC的外展
双叶正方形.
(1)作△ABC的外展双叶正方形ACDE和BCFG,记△ABC,△DCF的面积分别为S1和S2.
①如图(2),当∠ACB=90°时,求证:S1=S2;
②如图(3),当∠ACB≠90°时,S1与S2是否仍然相等,请说明理由.
(2)已知△ABC中,AC=3,BC=4,作其外展三叶正方形,记△DCF、△AEN、△BGM的面积和为S,请利用图(1)探究:当∠ACB的度数发生变化时,S的值是否发生变化?若不变,求出S的值;若变化,求出S的最大值.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.
(1)求证:CE=AD;
(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;
(3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知△ABC,若将△ABC平移后得到△A′B′C′,且点A(1,0)的对应点A′的坐标是(-1,0),则△ABC是向_____________个单位得到△A′B′C′.
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列多项式乘法,能用平方差公式进行计算的是( )
A.(x+y)(-x-y)
B.(2x+3y)(2x-3z)
C.(-a-b)(a-b)
D.(m-n)(n-m) -
科目: 来源: 题型:
查看答案和解析>>【题目】将点A(-2,1)先向右平移3个单位,再向下平移1个单位后得到点B(a,b),则ab=__________.
相关试题