【题目】在平面直角坐标系中,O是坐标原点,ABCD的顶点A的坐标为(﹣2,0),点D的坐标为(0,2
),点B在x轴的正半轴上,点E为线段AD的中点.![]()
(1)如图1,求∠DAO的大小及线段DE的长;
(2)过点E的直线l与x轴交于点F,与射线DC交于点G.连接OE,△OEF′是△OEF关于直线OE对称的图形,记直线EF′与射线DC的交点为H,△EHC的面积为3
.
①如图2,当点G在点H的左侧时,求GH,DG的长;
②当点G在点H的右侧时,求点F的坐标(直接写出结果即可).
参考答案:
【答案】
(1)解:∵A(﹣2,0),D(0,2
)
∴AO=2,DO=2
,
∴tan∠DAO=
=
,
∴∠DAO=60°,
∴∠ADO=30°,
∴AD=2AO=4,
∵点E为线段AD中点,
∴DE=2;
(2)解:①如图2,
![]()
过点E作EM⊥CD,
∴CD∥AB,
∴∠EDM=∠DAB=60°,
∴EM=DEsin60°=
,
∴GH=6,
∵CD∥AB,
∴∠DGE=∠OFE,
∵△OEF′是△OEF关于直线OE的对称图形,
∴△OEF′≌△OEF,
∴∠OFE=∠OF′E,
∵点E是AD的中点,
∴OE=
AD=AE,
∵∠EAO=60°,
∴△EAO是等边三角形,
∴∠EOA=60°,∠AEO=60°,
∵△OEF′≌△OEF,
∴∠EOF′=∠EOA=60°,
∴∠EOF′=∠AEO,
∴AD∥OF′,
∴∠OF′E=∠DEH,
∴∠DEH=∠DGE,
∵∠DEH=∠EDG,
∴△DHE∽△DEG,
∴
,
∴DE2=DG×DH,
设DG=x,则DH=x+6,
∴4=x(x+6),
∴x1=﹣3+
,x2=﹣3﹣
,
∴DG=﹣3+
.
②如图3,
![]()
过点E作EM⊥CD,
∴CD∥AB,
∴∠EDM=∠DAB=60°,
∴EM=DEsin60°=
,
∴GH=6,
∵CD∥AB,
∴∠DHE=∠OFE,
∵△OEF′是△OEF关于直线OE的对称图形,
∴△OEF′≌△OEF,
∴∠OFE=∠OF′E,
∵点E是AD的中点,
∴OE=
AD=AE,
∵∠EAO=60°,
∴△EAO是等边三角形,
∴∠EOA=60°,∠AEO=60°,
∵△OEF′≌△OEF,
∴∠EOF′=∠EOA=60°,
∴∠EOF′=∠AEO,
∴AD∥OF′,
∴∠OF′E=∠DEH,
∴∠DEG=∠DHE,
∵∠DEG=∠EDH,
∴△DGE∽△DEH,
∴
,
∴DE2=DG×DH,
设DH=x,则DG=x+6,
∴4=x(x+6),
∴x1=﹣3+
,x2=﹣3﹣
,
∴DH=﹣3+
.
∴DG=3+ ![]()
∴DG=AF=3+
,
∴OF=5+
,
∴F(﹣5﹣
,0).
【解析】(1)根据点A的坐,点D的坐标,在Rt△AOD中,利用解直角三角形易求出结论。
(2)①由(1)可知∠DAO=60°,添加辅助线,过点E作EM⊥CD,利用解直角三角形可求出EM、GH的长,根据已知易证明△OEF′≌△OEF,可得出角相等,点E是AD的中点,易得到△EAO是等边三角形,再证明△DHE∽△DEG,得出对应边成比例,设DG=x,则DH=x+6,建立方程,求出方程的解即可;②要求点F的坐标,就需求OF的长,解法与①类似求出DG,DG=AF,即可求出OF的长,从而求出点F的坐标。
【考点精析】认真审题,首先需要了解平行四边形的性质(平行四边形的对边相等且平行;平行四边形的对角相等,邻角互补;平行四边形的对角线互相平分),还要掌握相似三角形的判定与性质(相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方)的相关知识才是答题的关键.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC的三个顶点坐标分别是A(3,3),B(1,1),C(4,-1).
(1)直接写出点A,B,C关于x轴对称的点A1,B1,C1,的坐标:A1( , ),B1( , ),C1( , ).
(2)在图中作出△ABC关于y轴对称的图象△A2B2C2.
(3)在y轴上求作一点P,使得PA+PB的值最小.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知CD平分∠ACB,∠1=∠2.
(1)求证:DE∥AC;
(2)若∠3=30°,∠B=25°,求∠BDE的度数.

-
科目: 来源: 题型:
查看答案和解析>>【题目】甲、乙两人共同计算一道整式乘法题:(2x+a)(3x+b).甲由于把第一个多项式中的“+a”看成了“﹣a”,得到的结果为6x2+11x﹣10;乙由于漏抄了第二个多项式中x的系数,得到的结果为2x2﹣9x+10.
(1)求a、b的值.
(2)计算这道乘法题的正确结果.
-
科目: 来源: 题型:
查看答案和解析>>【题目】安庆市在精准扶贫活动中,因地制宜指导农民调整种植结构,增加种植效益,2018年李大伯家在工作队的帮助下,计划种植马铃薯和蔬菜共15亩,预计每亩的投入与产出如下表:(每亩产出-每亩投入=每亩纯收入)
种类
投入(元)
产出(元)
马铃薯
1000
4500
蔬菜
1200
5300
(1)如果这15亩地的纯收入要达到54900元,需种植马铃薯和蔬菜各多少亩?
(2)如果总投入不超过16000元,则最多种植蔬菜多少亩?该情况下15亩地的纯收入是多少?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,AB=AC,D是BC边上的中点,连接AD,BE平分∠ABC交AC于点E,过E作EF∥BC交AB于点F.
(1)若∠C=36°,求∠BAD的度数;
(2)求证:FB=FE.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知抛物线y=﹣x2+2x+3与x轴交于A,B两点(点A在点B的左边),与y轴交于点C,连接BC.

(1)求A,B,C三点的坐标;
(2)若点P为线段BC上一点(不与B,C重合),PM∥y轴,且PM交抛物线于点M,交x轴于点N,当△BCM的面积最大时,求△BPN的周长;
(3)在(2)的条件下,当△BCM的面积最大时,在抛物线的对称轴上存在一点Q,使得△CNQ为直角三角形,求点Q的坐标.
相关试题