【题目】如图,长方形OABC中,O为平面直角坐标系的原点,A点的坐标为
,C点的坐标为
,点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着
的路线移动
即:沿着长方形移动一周
.
写出点B的坐标
______![]()
当点P移动了4秒时,描出此时P点的位置,并求出点P的坐标.
在移动过程中,当点P到x轴距离为5个单位长度时,求点P移动的时间.
![]()
参考答案:
【答案】(1)(4,6)(2)(2,6)(3)点P移动的时间2.5秒或5.5秒
【解析】
(1)根据长方形的性质易得点B的坐标.
(2)根据题意,点P的运动速度为每秒2个单位长度,当点P移动了4秒时,其运动了8个单位长度,此时点P的坐标为(4,4),位于AB上.
(3)根据题意,当点P到x轴的距离为5个单位长度时,有两种情况,分情况讨论计算即可.
解:(1)根据长方形的性质,可得AB与y轴平行,BC与x轴平行,故点B的坐标为(4,6).
(2)根据题意,点P的运动速度为每秒2个单位长度,当点P移动了4秒时,其运动了8个单位长度,此时点P的坐标为(4,4),位于AB上,描点如图.
![]()
(3)根据题意,当点P到x轴的距离为5个单位长度时,有两种情况:当点P在AB上时,点P运动了4+5=9(个)单位长度,此时点P运动了4.5秒;当点P在OC上时,点P运动了4+6+4+1=15(个)单位长度,此时点P运动了7.5秒.
综上所述,点P移动了4.5秒或7.5秒.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2016次运动后,动点P的坐标是( )

A. (2016,1) B. (2016,0) C. (2016,2) D. (2017,0)
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,正三角形和正方形的面积分别为10,6,两阴影部分的面积分别为a,b(a>b),则(a﹣b)等于 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,正方形ABCD中,E为AB边上一点,过点D作DF⊥DE,与BC延长线交于点F.连接EF,与CD边交于点G,与对角线BD交于点H.
(1)若BF=BD=
,求BE的长;(2)若∠ADE=2∠BFE,求证:FH=HE+HD.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在直角梯形ABCD中,AD∥BC,∠B=90°,且AD=12cm,AB=8cm,DC=10cm,若动点P从A点出发,以每秒2cm的速度沿线段AD向点D运动;动点Q从C点出发以每秒3cm的速度沿CB向B点运动,当P点到达D点时,动点P、Q同时停止运动,设点P、Q同时出发,并运动了t秒,回答下列问题:

(1)BC= cm;
(2)当t为多少时,四边形PQCD成为平行四边形?
(3)当t为多少时,四边形PQCD为等腰梯形?
(4)是否存在t,使得△DQC是等腰三角形?若存在,请求出t的值;若不存在,说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,E点为DF上的点,B为AC上的点,∠1=∠2,∠C=∠D.

试说明:AC∥DF.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,已知△ABC,求证:∠A+∠B+∠C=180°.
通过画平行线,将∠A、∠B、∠C作等角代换,使各角之和恰为一平角,依辅助线不同而得多种证法.

证法1:如图1,延长BC到D,过C画CE∥BA.
∵BA∥CE(作图2所知),
∴∠B=∠1,∠A=∠2(两直线平行,同位角、内错角相等).
又∵∠BCD=∠BCA+∠2+∠1=180°(平角的定义),
∴∠A+∠B+∠ACB=180°(等量代换).
如图3,过BC上任一点F,画FH∥AC,FG∥AB,这种添加辅助线的方法能证明∠A+∠B+∠C=180°吗?请你试一试.
相关试题