【题目】为鼓励大学毕业生自主创业,某市政府出台了相关政策:由政府协调,本市企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担.李明按照相关政策投资销售本市生产的一种新型节能灯.已知这种节能灯的成本价为每件10元,出厂价为每件12元,每月销售量y(件)与销售单价x(元)之间的关系近似满足一次函数:y=﹣10x+500.
(1)李明在开始创业的第一个月将销售单价定为20元,那么政府这个月为他承担的总差价为多少元?
(2)设李明获得的利润为w(元),当销售单价定为多少元时,每月可获得最大利润?
(3)物价部门规定,这种节能灯的销售单价不得高于25元.如果李明想要每月获得的利润不低于3000元,那么政府为他承担的总差价最少为多少元?
参考答案:
【答案】(1)政府这个月为他承担的总差价为600元.(2)当销售单价定为30元时,每月可获得最大利润4000元.(3)销售单价定为25元时,政府每个月为他承担的总差价最少为500元.
【解析】
试题分析:(1)把x=20代入y=﹣10x+500求出销售的件数,然后求出政府承担的成本价与出厂价之间的差价;
(2)由总利润=销售量每件纯赚利润,得w=(x﹣10)(﹣10x+500),把函数转化成顶点坐标式,根据二次函数的性质求出最大利润;
(3)令﹣10x2+600x﹣5000=3000,求出x的值,结合图象求出利润的范围,然后设政府每个月为他承担的总差价为p元,根据一次函数的性质求出总差价的最小值.
解:(1)当x=20时,y=﹣10x+500=﹣10×20+500=300,
300×(12﹣10)=300×2=600元,
即政府这个月为他承担的总差价为600元.
(2)由题意得,w=(x﹣10)(﹣10x+500)
=﹣10x2+600x﹣5000
=﹣10(x﹣30)2+4000
∵a=﹣10<0,∴当x=30时,w有最大值4000元.
即当销售单价定为30元时,每月可获得最大利润4000元.
(3)由题意得:﹣10x2+600x﹣5000=3000,
解得:x1=20,x2=40.
∵a=﹣10<0,抛物线开口向下,
![]()
∴结合图象可知:当20≤x≤40时,4000>w≥3000.
又∵x≤25,
∴当20≤x≤25时,w≥3000.
设政府每个月为他承担的总差价为p元,
∴p=(12﹣10)×(﹣10x+500)
=﹣20x+1000.
∵k=﹣20<0.
∴p随x的增大而减小,
∴当x=25时,p有最小值500元.
即销售单价定为25元时,政府每个月为他承担的总差价最少为500元.
-
科目: 来源: 题型:
查看答案和解析>>【题目】请你写出一个有一根为1的一元二次方程: .(答案不唯一)
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知AB∥x轴,A点的坐标为(3,2),并且AB=5,则B点的坐标为____________;
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知直角梯形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=AB=2,OC=3,过点B作BD⊥BC,交OA于点D.将∠DBC绕点B按顺时针方向旋转,角的两边分别交y轴的正半轴、x轴的正半轴于E和F.
(1)求经过A、B、C三点的抛物线的解析式;
(2)当BE经过(1)中抛物线的顶点时,求CF的长;
(3)连结EF,设△BEF与△BFC的面积之差为S,问:当CF为何值时S最小,并求出这个最小值.

-
科目: 来源: 题型:
查看答案和解析>>【题目】“350亿”这个数用科学计数法表示为_______________;数”13.14万”精确到________位;用四舍五入法将130.96精确到十分位是_______________;
-
科目: 来源: 题型:
查看答案和解析>>【题目】解下列方程
(1)(x﹣5)2=x﹣5
(2)x2+12x+27=0(配方法).
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列命题中,假命题的个数是( )
①垂直于半径的直线一定是这个圆的切线;
②圆有且只有一个外切三角形;
③三角形有且只有一个内切圆;
④三角形的内心到三角形的三个顶点的距离相等.
A. 1 B. 2 C. 3 D. 4
相关试题