【题目】(1)如图1,在△ABC中,∠ACB=2∠B,∠C=90°,AD为∠BAC的平分线交BC于D,求证:AB=AC+CD.(提示:在AB上截取AE=AC,连接DE)
![]()
![]()
![]()
(2)如图2,当∠C≠90°时,其他条件不变,线段AB、AC、CD又有怎样的数量关系,直接写出结果,不需要证明.
(3)如图3,当∠ACB≠90°,∠ACB=2∠B ,AD为△ABC的外角∠CAF的平分线,交BC的延长线于点D,则线段 AB、AC、CD又有怎样的数量关系?写出你的猜想,并加以证明.
参考答案:
【答案】(1)见解析;(2)AB=AC+CD;(3)AB=CD﹣AC
【解析】试题分析:(1)在AB上截取AE=AC,连接DE,根据角平分线的定义得到∠1=∠2.推出△ACD≌△AED(SAS).根据全等三角形的性质得到∠AED=∠C=90,CD=ED,根据已知条件得到∠B=45°.求得∠EDB=∠B=45°.得到DE=BE,等量代换得到CD=BE.即可得到结论;
(2)在AC取一点E使AB=AE,连接DE,易证△ABD≌△AED,所以∠B=∠AED,BD=DE,又因为∠B=2∠C,所以∠AED=2∠C,因为∠AED是△EDC的外角,所以∠EDC=∠C,所以ED=EC,BD=EC,进而可证明AB+BD=AE+EC=AC;
(3)在AB的延长线AF上取一点E,使得AE=AC,连接DE.证明△ACD≌△AED,根据全等三角形的性质得到DE=BE,BE=CD,即可得出结论.
试题解析:(1)证明:在AB上取一点E,使AE=AC
![]()
∵AD为∠BAC的平分线
∴∠BAD=∠CAD.
在△ACD和△AED中,
∴△ACD≌△AED(SAS).
∴∠AED=∠C=90°,CD=ED,
又∵∠ACB=2∠B,∠C=90°,
∴∠B=45°. ∴∠EDB=∠B=45°.
∴DE=BE, ∴CD=BE.
∵AB=AE+BE, ∴AB=AC+CD.
(2)证明:在AB取一点E使AC=AE,
![]()
在△ACD和△AED中,
,
∴△ACD≌△AED,
∴∠C=∠AED,CD=DE,
又∵∠C=2∠B,
∴∠AED=2∠B,
∵∠AED是△EDC的外角,
∴∠EDB=∠B,
∴ED=EB,
∴CD=EB,
∴AB=AC+CD;
(3)猜想:AB=CD﹣AC
证明:在BA的延长线上取一点E,使得AE=AC,连接DE,
![]()
在△ACD和△AED中,
,
∴△ACD≌△AED(SAS),
∴∠ACD=∠AED,CD=DE,
∴∠ACB=∠FED,
又∵∠ACB=2∠B
∴∠FED=2∠B,
又∵∠FED=∠B+∠EDB,
∴∠EDB=∠B,
∴DE=BE,
∴BE=CD,
∵AB=BE-AE
∴AB=CD﹣AC.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某公司组织退休职工组团前往某景点游览参观,参加人员共70人.旅游景点规定:①门票每人60元,无优惠;②上山游览必须乘坐景点安排的观光车游览,观光车有小型车和中型车两类,分别可供4名和11名乘客乘坐;且小型车每辆收费60元,中型车每人收费10元.若70人正好坐满每辆车且参观游览的总费用不超过5000元,问景点安排的小型车和中型车各多少辆?
-
科目: 来源: 题型:
查看答案和解析>>【题目】某工厂现有甲种原料3600kg,乙种原料2410kg,计划利用这两种原料生产A,B两种产品共500件,产品每月均能全部售出.已知生产一件A产品需要甲原料9kg和乙原料3kg;生产一件B种产品需甲种原料4kg和乙种原料8kg.
(1)设生产x件A种产品,写出x应满足的不等式组.
(2)问一共有几种符合要求的生产方案?并列举出来.
(3)若有两种销售定价方案,第一种定价方案可使A产品每件获得利润1.15万元,B产品每件获得利润1.25万元;第二种定价方案可使A和B产品每件都获得利润1.2万元;在上述生产方案中哪种定价方案盈利最多?(请用数据说明)
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC和△DCE均是等腰三角形,CA=CB,CD=CE,∠BCA=∠DCE.

(1)求证:BD=AE;
(2)若∠BAC=70°,求∠BPE的度数.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在Rt△ABC中,∠ABC=90°,AB=8,BC=6,点D为AC边上的动点,点D从点C出发,沿边CA向点A运动,当运动到点A时停止,若设点D运动的时间为t秒.点D运动的速度为每秒1个单位长度.
(1)当t=2时,CD= , AD= ;
(2)求当t为何值时,△CBD是直角三角形,说明理由;
(3)求当t为何值时,△CBD是以BD或CD为底的等腰三角形?并说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,直角△ABC的三个顶点分别是A(﹣3,1),B(0,3),C(0,1)

(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C1;
(2)分别连结AB1、BA1后,求四边形AB1A1B的面积.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,线段AB=CD,AB与CD相交于点O,且∠1=60°,CE是由AB平移所得,试确定AC+BD与AB的大小关系,并说明理由.

相关试题