【题目】如图,在圆 O 中有折线 ABCO,BC=6,CO=4,∠B=∠C=60°,则弦 AB 的长为__________________.
![]()
参考答案:
【答案】10
【解析】分析:作OD⊥AB垂足为D,利用垂径定理得AB=2BD,作OE∥AB交BC于E,构造等边△COE,过E点作EF⊥AB,垂足为F,得Rt△BEF,而∠B=60°,可得BF=
BE,再根据BD=BF+DF求BD.
详解:如图,作OD⊥AB垂足为D,OE∥AB交BC于E,过E点作EF⊥AB,垂足为F,
∵OE∥AB,∴△COE为等边三角形,∴OE=CE=OC=4,
∵OD⊥AB,EF⊥AB,∴DF=OE=4,BE=BC-CE=2,
在Rt△BEF中,∵∠B=60°,∴BF=
BE=1,
∴BD=BF+DF=1+4=5,
由垂径定理,得AB=2BD=10.
故答案为:10.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】小明用尺规作图作△ABC边AC上的高BH,作法如下:
①分别以点D,E为圆心,大于
DE的长为半径作弧,两弧交于F; ②作射线BF,交边AC于点H;
③以B为圆心,BK长为半径作弧,交直线AC于点D和E;
④取一点K,使K和B在AC的两侧;
所以,BH就是所求作的高. 其中顺序正确的作图步骤是( )

A. ①②③④ B. ④③②① C. ②④③① D. ④③①②
-
科目: 来源: 题型:
查看答案和解析>>【题目】某校召开运动会,七(1)班学生到超市分两次(第二次少于第一次)购买某种饮料90瓶,共用去205元,已知该种饮料价格如下:
购买瓶数/瓶
不超过30
30以上不超过50
50以上
单价/元
3
2.5
2
求:两次分别购买这种饮料多少瓶?
-
科目: 来源: 题型:
查看答案和解析>>【题目】对于一个函数,如果它的自变量 x 与函数值 y 满足:当1≤x≤1 时,1≤y≤1,则称这个函数为“闭 函数”.例如:y=x,y=x 均是“闭函数”. 已知 y ax2 bx c(a0) 是“闭函数”,且抛物线经过点 A(1,1)和点 B(1,1),则 a 的取值范围是______________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】小高从家门口骑车去离家4千米的单位上班,先花3分钟走平路1千米,再走上坡路以0.2千米/分钟的速度走了5分钟,最后走下坡路花了4分钟到达工作单位,若设他从家开始去单位的时间为t(分钟),离家的路程为y(千米),则y与t(8<t≤12)的函数关系为( )
A. y=0.5t(8<t≤12) B. y=0.5t+2(8<t≤12)
C. y=0.5t+8(8<t≤12) D. y="0." 5t-2(8<t≤12)
-
科目: 来源: 题型:
查看答案和解析>>【题目】甲、乙两车从A城出发匀速行驶至B城,在整个行驶过程中,甲、乙两车离开A城的距离y(km)与行驶的时间t(h)之间的函数关系如图所示.
(1)求乙车离开A城的距离y关于t的函数解析式;
(2)求乙车的速度.

-
科目: 来源: 题型:
查看答案和解析>>【题目】当前,交通拥堵是城市管理的一大难题.我市城东高架桥的开通为分流过境车辆、缓解市内交通压力 起到了关键作用,但为了保证安全,高架桥上最高限速 80 千米/小时.在一般条件下,高架桥上的车流 速度 v(单位:千米/小时)是车流密度 x(单位:辆/千米)的函数,当桥上的车流密度达到 180 辆/千 米时,造成堵塞,此时车流速度为 0;当 0≤x≤20 时,桥上畅通无阻,车流速度都为 80 千米/小时, 研究表明:当 20≤x≤180 时,车流速度 v 是车流密度 x 的一次函数.
(1)当 0≤x≤20 和 20≤x≤180 时,分别写出函数 v 关于 x 的函数关系式;
(2)当车流密度 x 为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)w=x·v可以达到最大,并求出最大值;
(3)某天早高峰(7:30—9:30)经交警部门控制管理,桥上的车流速度始终保持 40 千米/小时,问这天 早高峰期间高架桥分流了多少辆车?
相关试题