【题目】如图,以圆O为圆心,半径为1的弧交坐标轴于AB两点,P是弧上一点(不与AB重合),连接OP,设∠POB=α,则点P的坐标是

A. sinαsinα B. cosαcosα C. cosαsinα D. sinαcosα


参考答案:

【答案】C

【解析】过P作PQ⊥OB,交OB于点Q,在直角三角形OPQ中,利用锐角三角函数定义表示出OQ与PQ,即可确定出P的坐标.

解:过P作PQ⊥OB,交OB于点Q,

在Rt△OPQ中,OP=1,∠POQ=α,

∴sinα=,cosα=,即PQ=sinα,OQ=cosα,

则P的坐标为(cosα,sinα),

故选C.

“点睛”此题考查了解直角三角形,以及坐标与图形性质,熟练掌握锐角三角函数定义是解本题的关键.

关闭