【题目】如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的中点,过点A作AD⊥AB交BE的延长线于点D,CG平分∠ACB交BD于点G,F为AB边上﹣点,连接CF,且∠ACF=∠CBG.
(1)求证:AF=CG;
(2)写出图中长度等于2DE的所有线段.
![]()
参考答案:
【答案】(1)详见解析;(2)长度等于2DE的线段有CF、BG、DG.
【解析】
(1)要证AF=CG,只需证明△AFC≌△CBG即可.
(2)延长CG交AB于H,则CH⊥AB,H平分AB,继而证得CH∥AD,得出DG=BG和△ADE与△CGE全等,从而证得CF=2DE.
证明:(1)∵∠ACB=90°,CG平分∠ACB,
∴∠ACG=∠BCG=45°,
又∵∠ACB=90°,AC=BC,
∴∠CAF=∠CBF=45°,
∴∠CAF=∠BCG,
在△AFC与△CGB中,
,
∴△AFC≌△CBG(ASA),
∴AF=CG;
(2)延长CG交AB于H,
∵CG平分∠ACB,AC=BC,
∴CH⊥AB,CH平分AB,
∵AD⊥AB,
∴AD∥CG,
∴∠D=∠EGC,
在△ADE与△CGE中,
,
∴△ADE≌△CGE(AAS),
∴DE=GE,
即DG=2DE,
∵AD∥CG,CH平分AB,
∴DG=BG,
∵△AFC≌△CBG,
∴CF=BG,
∴CF=2DE.
∵BG=CF,
∴BG=2DE,
∴DG=2DE,
故长度等于2DE的线段有CF、BG、DG.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,在锐角△ABC中,∠ABC=45°,高线AD、BE相交于点F.
(1)判断BF与AC的数量关系并说明理由;
(2)如图2,将△ACD沿线段AD对折,点C落在BD上的点M,AM与BE相交于点N,当DE∥AM时,判断NE与AC的数量关系并说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,平行四边形ABCD的对角线相交于点O,过点O的任意一条直线与边AD相交于点E,与边BC相交于点F,求证:OE=OF.

-
科目: 来源: 题型:
查看答案和解析>>【题目】甲、乙两工程队承包一项工程,如果甲工程队单独施工,恰好如期完成;如果乙工程队单独施工就要超过6个月才能完成,现在甲、乙两队先共同施工4个月,剩下的由乙队单独施工,则恰好如期完成.
(1)问原来规定修好这条公路需多少长时间?
(2)现要求甲、乙两个工程队都参加这项工程,但由于受到施工场地条件限制,甲、乙两工程队不能同时施工.已知甲工程队每月的施工费用为4万元,乙工程队每月的施工费用为2万元.为了结算方便,要求:甲、乙的施工时间为整数个月,不超过15个月完成.当施工费用最低时,甲、乙各施工了多少个月?
-
科目: 来源: 题型:
查看答案和解析>>【题目】(本题满分10分)阅读下列材料:
(1)关于x的方程x2-3x+1=0(x≠0)方程两边同时乘以
得:
即
,
,(2)a3+b3=(a+b)(a2-ab+b2);a3-b3=(a-b)(a2+ab+b2).
根据以上材料,解答下列问题:
(1)x2-4x+1=0(x≠0),则
= ______ ,
= ______ ,
= ______ ; (2)2x2-7x+2=0(x≠0),求
的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,一棵大树在一次强台风中折断倒下,未折断树杆AB与地面仍保持垂直的关系,而折断部分AC与未折断树杆AB形成53°的夹角.树杆AB旁有一座与地面垂直的铁塔DE,测得BE=6米,塔高DE=9米.在某一时刻的太阳照射下,未折断树杆AB落在地面的影子FB长为4米,且点F、B、C、E在同一条直线上,点F、A、D也在同一条直线上.求这棵大树没有折断前的高度.(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈1.33)

-
科目: 来源: 题型:
查看答案和解析>>【题目】小明参加某网店的“翻牌抽奖”活动,如图,共有4张牌,分别对应5元,10元,15元,20元的现金优惠券,小明只能看到牌的背面.

(1)如果随机翻一张牌,那么抽中20元现金优惠券的概率是 .
(2)如果随机翻两张牌,且第一次翻的牌不参与下次翻牌,则所获现金优惠券的总值不低于30元的概率是多少?请画树状图或列表格说明问题.
相关试题