【题目】如图,小李在一次高尔夫球选拔赛中,从山坡下O点打出一球向球洞A点飞去,球的飞行路线为抛物线,如果不考虑空气阻力,当球达到最大水平高度12米时,球移动的水平距离为9米.已知山坡OA与水平方向OC的夹角为30o,O、A两点相距8
米.
![]()
(1)求直线OA的解析式;
(2)求出球的飞行路线所在抛物线的解析式;
(3)判断小李这一杆能否把高尔夫球从O点直接打入球洞A点.
参考答案:
【答案】(1)直线OA的解析式为y=
x;(2)y=
x+
x;(3)不能.
【解析】
试题分析:(1)已知OA与水平方向OC的夹角为30°,OA=8
米,解直角三角形可求点A的坐标及直线OA的解析式;
(2)分析题意可知,抛物线的顶点坐标为(9,12),经过原点(0,0),设顶点式可求抛物线的解析式;
(3)把点A的横坐标x=12代入抛物线解析式,看函数值与点A的纵坐标是否相符.
试题解析:(1)在Rt△AOC中,∵∠AOC=30 o ,OA=8
,∴
,
在Rt△AOC中由勾股定理得:
∴点A的坐标为(12,4
).
设直线OA的解析式为y=kx,把点A(12,4
)的坐标代入y=kx,得:4
=12k ,∴k=
,
∴直线OA的解析式为y=
x;
(2)∵顶点B的坐标是(9,12),
∴设此抛物线的解析式为y=a(x-9) +12,
把点O的坐标是(0,0)代入得:0=a(0-9)+12,解得a=
,
∴此抛物线的解析式为y=
(x-9) +12,即y=
x+
x;
(3)∵当x=12时,y=
(12-9) +12=![]()
![]()
,
∴小李这一杆不能把高尔夫球从O点直接打入球洞A点.
-
科目: 来源: 题型:
查看答案和解析>>【题目】计算(a2)4(﹣a)3= .
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图用点A(3,1)表示放置3个胡萝卜、1棵青菜,点B(2,3)表示放置2个胡萝卜、3棵青菜.

(1)请你写出其他各点C,D,E,F所表示的意义;
(2)若一只兔子从A到达B(顺着方格线走),有以下几条路可以选择:①A→C→D→B;②A→F→D→B;③A→F→E→B,帮可爱的小白兔选一条路,使它吃到的食物最多.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某商场经销一种水果,如果每千克盈利10元,每天可售出500千克.经市场调查发现, 在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.
(1)当每千克涨价为多少元时,每天的盈利最多?最多是多少?
(2)若商场只要求保证每天的盈利为6000元,同时又可使顾客得到实惠,每千克应涨价为多少?
-
科目: 来源: 题型:
查看答案和解析>>【题目】计算:
(1)a3a2a4+(﹣a)2;
(2)(x2﹣2xy+x)÷x
-
科目: 来源: 题型:
查看答案和解析>>【题目】二次函数y=ax2+bx+1(a≠0)的图象的顶点在第一象限,且过点(-1,0).设t=a+b+1,则t值的变化范围是( )

A. 0<t<1 B. 0<t<2 C. 1<t<2 D. -1<t<1
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列说法中正确的有( )个
①垂线段最短 ②直线外一点到这条直线的垂线段叫做点到直线的距离
③过一点有且只有一条直线与已知直线平行
④不相交的两条直线互相平行
⑤垂直于同一直线的两条直线互相平行
A. 1B. 2C. 3D. 4
相关试题