【题目】学生在素质教育基地进行社会实践活动,帮助农民伯伯采摘了黄瓜和茄子共40kg,了解到这些蔬菜的种植成本共42元,还了解到如下信息: ![]()
(1)请问采摘的黄瓜和茄子各多少千克?
(2)这些采摘的黄瓜和茄子可赚多少元?
参考答案:
【答案】
(1)解:设采摘黄瓜x千克,茄子y千克.根据题意,得
,
解得
.
答:采摘的黄瓜和茄子各30千克、10千克
(2)解:30×(1.5﹣1)+10×(2﹣1.2)=23(元).
答:这些采摘的黄瓜和茄子可赚23元
【解析】(1)设他当天采摘黄瓜x千克,茄子y千克,根据采摘了黄瓜和茄子共40kg,了解到这些蔬菜的种植成本共42元,列出方程,求出x的值,即可求出答案;(2)根据黄瓜和茄子的斤数,再求出每斤黄瓜和茄子赚的钱数,即可求出总的赚的钱数.本题考查了二元一次方程组的应用.解题关键是弄清题意,合适的等量关系,列出方程组.
-
科目: 来源: 题型:
查看答案和解析>>【题目】解答
(1)先化简再求值:a(1﹣4a)+(2a+1)(2a﹣1),其中a=4.
(2)解不等式组:
. -
科目: 来源: 题型:
查看答案和解析>>【题目】课间,小明拿着老师的等腰三角板玩,不小心掉到两墙之间,如图.
(1)求证:△ADC≌△CEB;
(2)从三角板的刻度可知AC=25cm,请你帮小明求出砌墙砖块的厚度a的大小(每块砖的厚度相等).

-
科目: 来源: 题型:
查看答案和解析>>【题目】据图解答

(1)如图1,在菱形ABCD中,CE=CF,求证:AE=AF.
(2)如图2,AB是⊙O的直径,PA与⊙O相切于点A,OP与⊙O相交于点C,连接CB,∠OPA=40°,求∠ABC的度数. -
科目: 来源: 题型:
查看答案和解析>>【题目】在△ABC中,
,设c为最长边.当
时,△ABC是直角三角形;当
时,利用代数式
和
的大小关系,可以判断△ABC的形状(按角分类).(1)请你通过画图探究并判断:当△ABC三边长分别为6,8,9时,△ABC为____三角形;当△ABC三边长分别为6,8,11时,△ABC为______三角形.
(2)小明同学根据上述探究,有下面的猜想:“当
时,△ABC为锐角三角形;当
时,△ABC为钝角三角形.” 请你根据小明的猜想完成下面的问题:当
,
时,最长边c在什么范围内取值时,△ABC是直角三角形、锐角三角形、钝角三角形? -
科目: 来源: 题型:
查看答案和解析>>【题目】已知,A市到B市的路程为260千米,甲车从A市前往B市运送物资,行驶2小时在M地汽车出现故障,立即通知技术人员乘乙车从A市赶来维修(通知时间忽略不计),乙车到达M地后又经过20分钟修好甲车后以原速原路返回A市,同时甲车以原来1.5倍的速度前往B市,如图是两车距A市的路程y(千米)与甲车所用时间x(小时)之间的函数图象,下列四种说法:
①甲车提速后的速度是60千米/时;
②乙车的速度是96千米/时;
③乙车返回时y与x的函数关系式为y=﹣96x+384;
④甲车到达B市乙车已返回A市2小时10分钟.
其中正确的个数是( )

A. 1个 B. 2个 C. 3个 D. 4个
-
科目: 来源: 题型:
查看答案和解析>>【题目】随着教育信息化的发展,学生的学习方式日益增多,教师为了指导学生有效利用网络进行学习,对学生进行了随机问卷调查(问卷调查表如图所示),并用调查结果绘制了图1、图2两幅统计图(均不完整),请根据统计图解答以下问题:

(1)本次接受问卷调查的学生共有人,在扇形统计图中“D“选项所占的百分比为;
(2)扇形统计图中,“B”选项所对应扇形圆心角为度;
(3)请补全条形统计图;
(4)若该校共有1200名学生,请您估计该校学生课外利用网络学习的时间在“A”选项的有多少人?
相关试题