【题目】如图,在四边形ABCD中,点E、F是BC、CD的中点,且AE⊥BC,AF⊥CD.
![]()
(1)求证:AB=AD.
(2)请你探究∠EAF,∠BAE,∠DAF之间有什么数量关系?并证明你的结论.
参考答案:
【答案】(1)见解析;(2)∠EAF=∠BAE+∠DAF,证明见解析.
【解析】
(1)证明:连接AC,
∵点E是BC的中点,AE⊥BC,
∴AB=AC,
∵点F是CD的中点,AF⊥CD,
∴AD=AC,
∴AB=AD;
(2)∠EAF=∠BAE+∠DAF.
证明:∵由(1)知AB=AC,
即△ABC为等腰三角形.
∵AE⊥BC,(已知),
∴∠BAE=∠EAC(等腰三角形的三线合一).
同理,∠CAF=∠DAF.
∴∠EAF=∠EAC+∠FAC=∠BAE+∠DAF.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图
,相邻两条平行直线间的距离相等,若等腰直角三角形ABC的直角顶点C在
上,另两个顶点A、B分别在
、
上,则
的值是_______.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某大型企业为了保护环境,准备购买A、B两种型号的污水处理设备共8台,用于同时治理不同成分的污水,若购买A型2台、B型3台需54万,购买A型4台、B型2台需68万元.
(1)求出A型、B型污水处理设备的单价;
(2)经核实,一台A型设备一个月可处理污水220吨,一台B型设备一个月可处理污水190吨,如果该企业每月的污水处理量不低于1565吨,请你为该企业设计一种最省钱的购买方案.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在13×13的网格图中,已知△ABC和点M(1,2).
(1)以点M为位似中心,画出△ABC的位似图形△A′B′C′,其中△A′B′C′与△ABC的位似比为2;
(2)写出△A′B′C′的各顶点坐标.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知 A(0,a),B(b,0),a、b 满足.a+b=4,a-b= 12,
(1)求 a、b 的值;
(2)在坐标轴上找一点 D,使三角形 ABD 的面积等于三角形 OAB 面积的一半, 求 D 点坐标;
(3)作∠BAO 平分线与∠ABC 平分线 BE 的反向延长线交于 P 点,求∠P 的度数.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,∠ACB=90°,D是BC的中点,DE⊥BC,CE//AD,若AC=2,CE=4,则四边形ACEB的周长为 ▲ .

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在边长为1的小正方形组成的网格中,△ABC和△DEF的顶点都在格点上,P1、P2、P3、P4、P5是△DEF边上的5个格点,请按要求完成下列各题:

(1)试证明△ABC为直角三角形;
(2)判断△ABC和△DEF是否相似,并说明理由;
(3)直接写出一个与△ABC相似的三角形,使它的三个顶点为P1、P2、P3、P4、P5中的三个格点.
相关试题